Главная » Дом » Будущее России: термоядерные реакторы и лунные базы

Будущее России: термоядерные реакторы и лунные базы

Реакция синтеза заключается в следующем: берутся два или больше атомных ядра и с применением некоторой силы сближаются настолько, что силы, действующие на таких расстояниях, преобладают над силами кулоновского отталкивания между одинаково заряженными ядрами, в результате чего формируется новое ядро. Оно будет иметь несколько меньшую массу, чем сумма масс исходных ядер, а разница становится энергией которая и выделяется в процессе реакции. Количество выделяемой энергии описывает известная формула E=mc². Более легкие атомные ядра проще свести на нужное расстояние, поэтому водород - самый распространенный элемент во Вселенной - является наилучшим горючим для реакции синтеза.

Установлено, что смесь двух изотопов водорода, дейтерия и трития, требует менее всего энергии для реакции синтеза по сравнению с энергией, выделяемой во время реакции. Однако, хотя смесь дейтерия и трития (D-T) является предметом большинства исследований синтеза, она в любом случае не является единственным видом потенциального горючего. Другие смеси могут быть проще в производстве; их реакция может надежнее контролироваться, или, что более важно, продуцировать меньше нейтронов. Особенную заинтересованность вызывают, так называемые «Безнейтронные» реакции, поскольку успешное промышленное использование такого горючего будет означать отсутствие долговременного радиоактивного загрязнения материалов и конструкции реактора, что, в свою очередь, могло бы положительно повлиять на общественное мнение и на общую стоимость эксплуатации реактора, существенно уменьшив затраты на его декомиссию. Проблемой остается то, что реакцию синтеза с использованием альтернативных видов горючего намного сложнее поддерживать, потому D-T реакция считается только необходимым первым шагом.

Схема реакции дейтерий-тритий

Управляемый термоядерный синтез может использовать различные виды термоядерных реакций в зависимости от вида применяемого топлива.

Реакция дейтерий + тритий (Топливо D-T)

Самая легко осуществимая реакция - дейтерий + тритий :

2 H + 3 H = 4 He + n при энергетическом выходе 17,6 МэВ (мегаэлектронвольт)

Такая реакция наиболее легко осуществима с точки зрения современных технологий, даёт значительный выход энергии, топливные компоненты дешевы. Недостаток её- выход нежелательной нейтронной радиации.

Два ядра : дейтерия и трития сливаются, с образованием ядра гелия (альфа-частица) и высокоэнергетического нейтрона .

²H + ³He = 4 He + . при энергетическом выходе 18,4 МэВ

Условия её достижения значительно сложнее. Гелий-3,кроме того, является редким и чрезвычайно дорогим изотопом. В промышленных масштабах на настоящее время не производится. Однако может быть получен из трития, получаемого в свою очередь на атомных электростанциях.

Сложность проведения термоядерной реакции можно характеризовать тройным произведением nTt (плотность на температуру на время удержания). По этому параметру реакция D-3He примерно в 100 раз сложнее, чем D-T.

Реакция между ядрами дейтерия (D-D, монотопливо)

Так же возможны реакции между ядрами дейтерия , они идут немного труднее реакции с участием гелия-3 :

В результате в дополнение к основной реакции в ДД-плазмы так же происходят:

Эти реакции медленно протекают параллельно с реакцией дейтерий + гелий-3 , а образовавшиеся в ходе них тритий и гелий-3 с большой вероятностью немедленно реагируют с дейтерием .

Другие типы реакций

Возможны и некоторые другие типы реакций. Выбор топлива зависит от многих факторов - его доступность и дешевизна, энергетический выход, лёгкость достижения требующихся для реакции термоядерного синтеза условий (в первую очередь, температуры), необходимых конструктивных характеристик реактора и проч.

«Безнейтронные» реакции

Наиболее перспективны т. н. «безнейтронные» реакции, так как порождаемый термоядерным синтезом нейтронный поток (например, в реакции дейтерий-тритий) уносит значительную часть мощности и порождает наведенную радиоактивность в конструкции реактора. Реакция дейтерий- гелий-3 является перспективной в том числе и по причине отсутствия нейтронного выхода.

Условия

Ядерная реакция лития-6 с дейтерием 6 Li(d,α)α

УТС возможен при одновременном выполнении двух критериев:

  • Температура плазмы:
src="/pictures/wiki/files/101/ea2cc6cfd93c3d519e815764da74047a.png" border="0">
  • Соблюдение критерия Лоусона :
src="/pictures/wiki/files/102/fe017490a33596f30c6fb2ea304c2e15.png" border="0"> (для реакции D-T)

где - плотность высокотемпературной плазмы, - время удержания плазмы в системе.

Именно от значения этих двух критериев в основном зависит скорость протекания той или иной термоядерной реакции.

В настоящее время управляемый термоядерный синтез ещё не осуществлён в промышленных масштабах. Строительство международного исследовательского реактора ITER находится в начальной стадии.

Термоядерная энергетика и гелий-3

Запасы гелия-3 на Земле составляют от 500 кг до 1 тонны, однако на Луне он находится в значительном количестве: до 10 млн тонн (по минимальным оценкам - 500 тысяч тонн). В настоящее время контролируемая термоядерная реакция осуществляется путем синтеза дейтерия ²H и трития ³H с выделением гелия-4 4 He и «быстрого» нейтрона n :

Однако при этом большая часть (более 80%) выделяемой кинетической энергии приходится именно на нейтрон. В результате столкновений осколков с другими атомами эта энергия преобразуется в тепловую . Помимо этого, быстрые нейтроны создают значительное количество радиоактивных отходов . В отличие от этого синтез дейтерия и гелия-3 ³He не производит (почти) радиоактивных продуктов:

Где p - протон

Это позволяет использовать более простые и эффективные системы преобразования кинетической реакции синтеза, такие, как магнитогидродинамический генератор .

Конструкции реакторов

Рассматриваются две принципиальные схемы осуществления управляемого термоядерного синтеза.

Исследования первого вида термоядерных реакторов существенно более развиты, чем второго. В ядерной физике , при исследованиях термоядерного синтеза , для удержания плазмы в некотором объёме используется магнитная ловушка. Магнитная ловушка призвана удерживать плазму от контакта с элементами термоядерного реактора , т.е. используется в первую очередь как теплоизолятор. Принцип удержания основан на взаимодействии заряженных частиц с магнитным полем, а именно на вращении заряженных частиц вокруг силовых линий магнитного поля. К сожалению, замагниченная плазма очень не стабильна и стремится покинуть магнитное поле. Поэтому для создания эффективной магнитной ловушки используются самые сверхмощныме электромагниты , потребляющее огромное количество энергии.

Можно уменьшить размер термоядерного реактора, если в нем использовать одновременно три способа создания термоядерной реакции.

A. Инерционный синтез. Облучать крошечные капсулы дейтериево-тритиевого топлива лазером мощностью 500 триллионов ватт:5. 10^14 Вт. Этот гигантский, очень кратковременный лазерный импульс 10^-8 c приводит к взрыву топливных капсул, в результате чего на доли секунды рождается мини-звезда. Но термоядерной реакции на нем не достигнуть.

B. Одновременно использовать Z-machine с Токамаком.

Z-Машина действует иначе чем лазер. Она пропускает через паутину тончайших проводов, окружающих топливную капсулу, заряд мощностью в полтриллиона ватт 5. 10^11 Вт.

Далее происходит примерно то же самое, что и с лазером: в результате Z-удара получается звезда. В ходе испытаний на Z-Машине уже удалось запустить реакцию синтеза. http://www.sandia.gov/media/z290.htmКапсулы покрыть серебром и соединить нитью из серебра или графита. Процесс поджига выглядит так: Выстрелить нитью (прикрепленных к группе шариков из серебра, внутри которых смесь дейтериия и трития) в вакуумную камеру. Образовать при пробое (разряде) канал молнии по ним, подавать ток по плазме. Одновременно облучить капсулы и плазму лазерным излучением. И одновременно или раньше включить Токамак. использовать три процесса нагрева плазмы одновременно. То есть поместить Z-машину и лазерный нагрев вместе внутри Токамака. Может быть можно создать и колебательный контур из катушек Токамака и организовать резонанс. Тогда он работал бы в экономном колебательном режиме.

Цикл топлива

Реакторы первого поколения будут, вероятнее всего, работать на смеси дейтерия и трития. Нейтроны , которые появляются в процессе реакции, поглотятся защитой реактора, а выделяющееся тепло будет использоваться для нагревания теплоносителяя в теплообменнике , и эта энергия, в свою очередь, будет использоваться для вращения генератора .

. .

Реакция с Li6 является экзотермической , обеспечивая получение небольшой энергии для реактора. Реакция с Li7 является эндотермической - но не потребляет нейтронов. По крайней мере некоторые реакции Li7 необходимы для замены нейтронов потерянных в реакции с другими элементами. Большинство конструкций реактора используют естественные смеси изотопов лития.

Это горючее имеет ряд недостатков:

Реакция продуцирует значительное количество нейтронов , которые активируют (радиоактивно заражают) реактор и теплообменник . Также требуются мероприятия для защиты от возможного истока радиоактивного трития.

Только около 20 % энергии синтеза есть в форме заряженных частиц (остальные нейтроны), что ограничивает возможность прямого превращения энергии синтеза в электроэнергию . Использование D-T реакции зависит от имеющихся запасов лития, которые значительно меньше чем запасы дейтерия. Нейтронное облучение во время D-T реакции настолько значительное, что после первой серии тестов на JET, наибольшем реакторе на сегодняшний день что использует это топливо, реактор стал настолько радиоактивным, что для завершения годового цикла тестов пришлось прибавить роботизованую систему дистанционного обслуживания.

Существуют, в теории, альтернативные виды горючего, которые лишены указанных недостатков. Но их использованию препятствует фундаментальное физическое ограничение. Чтобы получить достаточное количество энергии из реакции синтеза, необходимо удерживать достаточно плотную плазму при температуре синтеза (10 8 K) на протяжении определенного времени. Этот фундаментальный аспект синтеза описывается произведением густоты плазмы, n, на время содержания нагретой плазмы τ, что требуется для достижения точки равновесия. Произведение, nτ, зависит от типа горючего и является функцией температуры плазмы. Из всех видов горючего дейтерий-тритиевая смесь требует самого низкого значения nτ по меньшей мере на порядок, и самую низкую температуру реакции, по меньшей мере в 5 раз. Таким образом, D-T реакция является необходимым первым шагом, однако использование других видов горючего остается важной целью исследований.

Реакция синтеза в качестве промышленного источника электроэнергии

Энергия синтеза рассматривается многими исследователями в качестве «естественного» источника энергии в долгосрочной перспективе. Сторонники коммерческого использования термоядерных реакторов для производства электроэнергии приводят следующие аргументы в их пользу:

  • Практически неисчерпаемые запасы топлива (водород)
  • Топливо можно добывать из морской воды на любом побережье мира, что делает невозможным монополизацию горючего одной или группой стран
  • Невозможность неуправляемой реакции синтеза
  • Отсутствие продуктов сгорания
  • Нет необходимости использовать материалы которые могут быть использованы для производства ядерного оружия, таким образом исключается случаи саботажа и терроризма
  • По сравнению с ядерными реакторами, вырабатывается незначительное количество радиоактивных отходов с коротким периодом полураспада .
  • Оценивают, что наперсток , наполненный дейтерием, производит энергию, эквивалентную 20 тоннам угля. Озеро среднего размера в состоянии обеспечить любую страну энергией на сотни лет. Однако следует заметить, что существующие исследовательские реакторы спроектированы для достижения прямой дейтериево-тритиевой (DT) реакции, цикл топлива которой требует использования лития для производства трития, тогда как заявления о неисчерпаемости энергии касаются использования дейтериево-дейтериевой (DD) реакции во втором поколении реакторов.
  • Так же, как и реакция деления, реакция синтеза не производит атмосферных выбросов углекислоты, что является главным вкладом в глобальное потепление . Это является значительным преимуществом, поскольку использование горючих ископаемых для производства электроэнергии имеет своим следствием то, что, например в США производится 29 кг CO 2 (один из основных газов, которые могут считаться причиной глобального потепления) на жителя США в день.

Стоимость электроэнергии в сравнении с традиционными источниками

Критики указывают, что вопрос о экономической целесообразности использования ядерного синтеза для производства электроэнергии остается открытым. В том же исследовании по заказу Офиса в Справах Науки и Техники Британского Парламента указывается, что себестоимость производства электроэнергии с использованием термоядерного реактора будет, вероятно, в верхней части спектра стоимости традиционных источников энергии. Много будет зависеть от будущей технологии, структуры и регулирования рынка. Стоимость электроэнергии напрямую зависит от эффективности использования, продолжительности эксплуатирования и стоимости декомиссии реактора . Критики коммерческого использования энергии ядерного синтеза отрицают, что углеводородное топливо в значительной мере субсидируется правительством, как прямо так и косвенно, например использованием вооруженных сил для обеспечения их бесперебойного снабжения, война в Ираке часто приводится как неоднозначный пример такого способа субсидирования . Учет таких косвенных субсидий является очень сложным, и делает точное сравнение себестоимости практически невозможным.

Отдельно стоит вопрос стоимости исследований. Страны Европейского Сообщества тратят около 200 млн € ежегодно на исследования, и прогнозируется, что нужно еще несколько десятилетий пока промышленное использование ядерного синтеза станет возможным. Сторонники альтернативных источников электроэнергии считают, что было бы целесообразнее направить эти средства на внедрение возобновляемых источников электроэнергии.

Доступность коммерческой энергии ядерного синтеза

К сожалению, невзирая на распространенный оптимизм (распространенный начиная с 1950-х годов, когда первые исследования начались), существенные препятствия между сегодняшним пониманием процессов ядерного синтеза, технологическими возможностями и практическим использованием ядерного синтеза до сих пор не преодолены, неясным является даже насколько может быть экономически выгодно производство электроэнергии с использованием термоядерного синтеза. Хотя прогресс в исследованиях является постоянным, исследователи то и дело сталкиваются с новыми проблемами. Например, проблемой является разработка материала, способного выдержать нейтронную бомбардировку, что, как оценивается, должно быть в 100 раз интенсивнее чем в традиционных ядерных реакторах.

Различают следующие этапы в исследованиях:

1.Равновесие или режим «перевала» (Break-even): когда общая энергия что выделяется в процессе синтеза равняется общей энергии тратящей на запуск и поддержку реакции. Это соотношение помечают символом Q. Равновесие реакции было продемонстрировано на JET (Joint European Torus) в Великобритании в 1997 году . (Затратив на его разогрев 52 МВт электроэнергии, на выходе ученые получили мощность на 0,2 МВт выше затраченной.)

2.Пылающая плазма (Burning Plasma): промежуточный этап, на котором реакция будет поддерживаться главным образом альфа-частицами, что продуцируются в процессе реакции, а не внешним подогревом. Q ≈ 5. До сих пор не достигнутый.

3. Воспламенение (Ignition): стабильная реакция что поддерживает саму себя. Должна достигаться при больших значениях Q. До сих пор не достигнуто.

Следующим шагом в исследованиях должен стать ITER (International Thermonuclear Experimental Reactor), Международный Термоядерный Экспериментальный Реактор. На этом реакторе планируется провести исследование поведения высокотемпературной плазмы (пылающая плазма с Q ~ 30) и конструктивных материалов для промышленного реактора. Окончательной фазой исследований станет DEMO: прототип промышленного реактора , на котором будет достигнуто воспламенение, и продемонстрирована практическая пригодность новых материалов. Самые оптимистичные прогнозы завершения фазы DEMO: 30 лет. Учитывая ориентировочное время на построение и введение в эксплуатацию промышленного реактора, нас отделяет ~40 лет от промышленного использования термоядерной энергии.

Существующие токамаки

Всего в мире было построено около 300 токамаков. Ниже перечислены наиболее крупные из них.

  • СССР и Россия
    • Т-3 - первый функциональный аппарат.
    • Т-4 - увеличенный вариант Т-3
    • Т-7 - уникальная установка, в которой впервые в мире реализована относительно крупная магнитная система со сверхпроводящим соленоидом на базе ниобата олова , охлаждаемого жидким гелием . Главная задача Т-7 была выполнена: подготовлена перспектива для следующего поколения сверхпроводящих соленоидов термоядерной энергетики.
    • Т-10 и PLT - следующий шаг в мировых термоядерных исследованиях, они почти одинакового размера, равной мощности, с одинаковым фактором удержания. И полученные результаты идентичны: на обоих реакторах достигнута заветная температура термоядерного синтеза, а отставание по критерию Лоусона - всего в двести раз.
    • Т-15 - реактор сегодняшнего дня со сверхпроводящим соленоидом, дающим поле напряжённостью 3,6 Тл.
  • Ливия
    • ТМ-4А
  • Европа и Великобритания
    • JET (англ.) (Joint Europeus Tor) - самый крупный в мире токамак, созданный организацией Евратом в Великобритании . В нём использован комбинированный нагрев: 20 МВт - нейтральная инжекция, 32 МВт - ионно-циклотронный резонанс. В итоге критерий Лоусона лишь в 4-5 раз ниже уровня зажигания.
    • Tore Supra (фр.) (англ.) - токамак со сверхпроводящими катушками, один из крупнейших в мире. Находится в исследовательском центре Кадараш (Франция).
  • США
    • TFTR (англ.) (Test Fusion Tokamak Reactor) - крупнейший токамак США (в Принстонском университете) с дополнительным нагревом быстрыми нейтральными частицами. Достигнут высокий результат: критерий Лоусона при истинно термоядерной температуре всего в 5,5 раза ниже порога зажигания. Закрыт в 1997 г.
    • NSTX (англ.) (National Spherical Torus Experiment) - сферический токамак (сферомак) работающий в настоящее время в Принстонском университете. Первая плазма в реакторе получена в 1999 году, через два года после закрытия TFTR.
    • Alcator C-Mod (англ.) - один из трех крупнейших токамаков в США (два других - NSTX и DIII-D), Alcator C-Mod характеризуется самым высоким магнитным полем и давлением плазмы в мире. Работает с 1993 г.

Еще совсем недавно люди считали, что атом - это цельная неделимая частица. Позднее стало ясно, что он состоит из ядра и вращающихся вокруг него электронов. При этом центральная часть снова считалась неделимой и цельной. Сегодня мы знаем, что она состоит из протонов и нейтронов. Причем, в зависимости от числа последних, у одного и того же вещества может быть несколько изотопов. Итак, тритий - за вещество, как его получить и использовать?

Тритий - что это такое?

Водород - самое простое вещество в природе. Если говорить про его самую распространенную форму, о которой подробнее будет сказано чуть ниже, то его атом состоит лишь из одного протона и одного электрона. Однако он может принимать и "лишние" частицы, которые несколько меняют его свойства. Так, ядро трития состоит из протона и двух нейтронов. И если протий, то есть самая простая форма водорода - это то про его "улучшенную" версию этого не скажешь - в природе он встречается в незначительных количествах.

Изотоп водорода тритий (название происходит от греческого слова "третий") был открыт в 1934 году Резерфордом, Олифантом и Хартеком. И на самом деле, найти его пытались очень долго и упорно. Сразу после открытия дейтерия и тяжелой воды в 1932 году ученые стали искать этот изотоп с помощью повышения чувствительности при изучении обычного водорода. Однако, несмотря ни на что, их попытки были тщетны - даже в самых концентрированных образцах не удавалось получить даже намек на присутствие вещества, которое было просто обязано существовать. Но в итоге поиски все-таки увенчались успехом - Олифант синтезировал элемент с помощью в лаборатории Резерфорда.

Если коротко, то определение трития звучит следующим образом: радиоактивный изотоп водорода, ядро которого состоит из протона и двух нейтронов. Итак, что о нем известно?

Об изотопах водорода

Первый элемент периодической таблицы является одновременно наиболее распространенным во Вселенной. При этом в природе он встречается в виде одного из трех своих изотопов: протия, дейтерия или трития. Ядро первого состоит из одного протона, что и дало ему название. Кстати, это единственный стабильный элемент, у которого отсутствуют нейтроны. Следующим в ряду изотопов водорода является дейтерий. Ядро его атома состоит из протона и нейтрона, а название восходит к греческому слову "второй".

В лаборатории были получены также еще более тяжелые изотопы водорода с массовыми числами от 4 до 7. Период их полураспада ограничивается долями секунд.

Свойства

Атомная масса трития составляет примерно 3,02 а. е. м. По своим физическим свойствам это вещество почти не отличается от обычного водорода, то есть в нормальных условиях является легким газом без цвета, вкуса и запаха, обладает высокой теплопроводностью. При температуре около -250 градусов по Цельсию становится легкой и текучей бесцветной жидкостью. Диапазон, в пределах которых он находится в данном агрегатном состоянии довольно узок. Температура плавления составляет около 259 градусов по Цельсию, ниже которой водород становится снегоподобной массой. Кроме того, этот элемент довольно хорошо растворяется в некоторых металлах.

Однако есть и некоторые отличия в свойствах. Во-первых, третий изотоп обладает меньшей реакционной способностью, а во-вторых, тритий радиоактивен и в связи с этим нестоек. составляет чуть более 12 лет. В процессе радиолиза он превращается в третий изотоп гелия с испусканием электрона и антинейтрино.

Получение

В природе тритий содержится в незначительных количествах и образуется чаще всего в верхних слоях атмосферы при соударении космических частиц и, например, атомов азота. Однако существует и промышленный метод получения этого элемента с помощью облучения лития-6 нейтронами в

Синтез трития в объеме, масса которого составляет около 1 килограмма, обходится примерно в 30 миллионов долларов.

Использование

Итак, мы немного больше узнали про тритий - что это такое и его свойства. Но зачем он нужен? Разберемся чуть ниже. По некоторым данным мировая коммерческая потребность в тритии составляет порядка 500 граммов в год, еще около 7 килограмм уходит на военные нужды.

По данным американского института исследований энергетики и окружающей среды, с 1955 по 1996 год в США было произведено 2,2 центнера сверхтяжелого водорода. А на 2003 год общие запасы этого элемента составляли около 18 килограмм. Для чего же они используются?

Во-первых, тритий необходим для поддержания боеспособности ядерного оружия, которым, как известно, пока еще обладают некоторые страны. Во-вторых, без него не обходится термоядерная энергетика. Еще тритий используется в некоторых научных исследованиях, например, в геологии с его помощью датируют природные воды. Еще одно назначение - источник питания подсветки в часах. Кроме того, в настоящее время проводятся эксперименты по созданию радиоизотопных генераторов сверхмалой мощности, например, для питания автономных датчиков. Ожидается, что в этом случае срок их службы составит около 20 лет. Стоимость такого генератора составит порядка одной тысячи долларов.

В качестве оригинальных сувениров также существуют брелки с небольшим количеством трития внутри. Они издают свечение и выглядят довольно экзотично, особенно если знать о внутреннем содержании.

Опасность

Тритий радиоактивен, именно этим объясняется часть его свойств и видов использования. Его период полураспада составляет около 12 лет, при этом образуется гелий-3 с испусканием антинейтрино и электрона. В процессе этой реакции выделяется 18,59 кВт энергии и бета-частицы распространяются в воздухе. Обывателю может показаться странным, что радиоактивный изотоп используется, скажем, для подсветки в часах, ведь это может быть опасным, разве нет? На самом деле тритий едва ли чем-то угрожает человеческому здоровью, поскольку бета-частицы в процессе его распада распространяются максимум на 6 миллиметров и не могут преодолеть простейшие преграды. Впрочем, это не значит, что работа с ним абсолютно безопасна - любое попадание внутрь с пищей, воздухом или впитывание через кожу может привести к проблемам. Хотя в большинстве случаев он легко и быстро выводится, так бывает не всегда. Итак, тритий - что это такое с точки зрения радиационной опасности?

Меры защиты

Несмотря на то что малая энергия распада трития не позволяет радиации серьезно распространяться, так что бета-частицы не могут преодолеть даже кожу, не стоит пренебрегать своим здоровьем. При работе с этим изотопом можно, конечно, не использовать костюм радиационной защиты, но элементарные правила, такие как закрытая одежда и хирургические перчатки, соблюдать необходимо. Поскольку основную опасность тритий представляет при попадании внутрь, важно пресечь деятельность, при которой это станет возможным. В остальном беспокоиться не о чем.

Если все же он в большом количестве поступил в ткани организма, может развиться, острая или хроническая лучевая болезнь в зависимости от длительности, дозы и регулярности воздействия. В некоторых случаях этот недуг успешно излечивается, но при обширных поражениях возможен летальный исход.

В любом нормальном организме есть следы трития, хоть они и абсолютно незначительны и едва ли влияют на Ну а у любителей часов со светящимися стрелками его уровень выше в несколько раз, хотя и все равно считается безопасным.

Сверхтяжелая вода

Тритий, как и обычный водород, может образовывать новые вещества. В частности, он входит в молекулу так называемой сверхтяжелой (супертяжелой) воды. Свойства этого вещества не слишком отличаются от привычной каждому человеку H 2 O. При том, что тритиевая вода также может участвовать в метаболизме, она отличается довольно высокой токсичностью и выводится в течение десятидневного срока, за который ткани могут получить довольно высокую степень облучения. И хотя данное вещество менее опасно само по себе, оно является более опасным в связи с периодом, на протяжении которого находится в организме.

Водорода имеют собственные названия: H - протий (Н), H - дейтерий (D) и H - тритий (радиоактивен) (T).

Простое вещество водород - H 2 - лёгкий бесцветный газ . В смеси с воздухом или кислородом горюч и взрывоопасен . Нетоксичен . Растворим в этаноле и ряде металлов : железе , никеле , палладии , платине .

История

Еще средневековый ученый Парацельс заметил, что при действии кислот на железо выделяются пузырьки какого-то «воздуха». Но что это такое, он объяснить не мог. Теперь известно, что это был водород. «Водород представляет пример газа, – писал Д.И.Менделеев, – на первый взгляд не отличающегося от воздуха... Парацельс, открывший, что при действии некоторых металлов на серную кислоту получается воздухообразное вещество, не определил его отличия от воздуха. Действительно, водород бесцветен и не имеет запаха, так же, как и воздух; но, при ближайшем знакомстве с его свойствами, этот газ оказывается совершенно отличным от воздуха».

Английские химики 18 в., Генри Кавендиш и Джозеф Пристли, заново открывшие водород, первыми изучили его свойства. Они обнаружили, что это необычайно легкий газ – он в 14 раз легче воздуха. Если надуть им резиновый шарик, он взлетит ввысь. Это свойство водорода использовали раньше для наполнения воздушных шаров и дирижаблей. Правда, первый воздушный шар, построенный братьями Монгольфье, был наполнен не водородом, а дымом от горения шерсти и соломы. Такой странный способ получения горячего воздуха связан с тем, что братья, видимо, не были знакомы с законами физики; они наивно полагали, что эта смесь образует «электрический дым», способный поднять их легкий шар. Физик Шарль, знавший закон Архимеда, решил наполнить шар водородом; в отличие от монгольфьеров, наполненных горячим воздухом, шары с водородом французы называли шарльерами. Первый такой шар (он не нес никакого груза) поднялся с Марсова поля в Париже 27 августа 1783 и за 45 минут пролетел 20 км.

В декабре 1783 Шарль в сопровождении физика Франсуа Робера в присутствии 400 тысяч зрителей предприняли первый полёт на воздушном шаре, заполненном водородом. Гей-Люссак (также совместно с физиком Жаном Батистом Био) поставил в 1804 рекорд высоты, поднявшись на 7000 метров.

Но водород горюч. Более того, его смеси с воздухом взрываются, а смесь водорода с кислородом называют даже «гремучим газом». В мае 1937 пожар за несколько минут уничтожил гигантский немецкий дирижабль «Гинденбург» – в нем было 190 000 кубометров водорода. Тогда погибло 35 человек. После многих несчастных случаев водород в воздухоплавании больше не используют, его заменяют гелием или горячим воздухом.

При горении водорода образуется вода – соединение водорода и кислорода. Это доказал в конце 18 французский химик Лавуазье. Отсюда и название газа – «рождающий воду». Лавуазье также сумел получить водород из воды. Он пропускал водяные пары через раскаленную докрасна железную трубку с железными опилками. Кислород из воды прочно соединялся с железом, а водород выделялся в свободном виде. Сейчас водород тоже получают из воды, но другим способом – с помощью электролиза (см. ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ. ЭЛЕКТРОЛИТЫ)

Свойства водорода

Водород – самый распространенный химический элемент во Вселенной. Он составляет примерно половину массы Солнца и большинства звезд, является основным элементом в межзвездном пространстве и в газовых туманностях. Распространен водород и на Земле. Здесь он находится в связанном состоянии – в виде соединений. Так, вода содержит 11% водорода по массе, глина – 1,5%. В виде соединений с углеродом водород входит в состав нефти, природных газов, всех живых организмов. Немного свободного водорода содержится в воздухе , но его там совсем мало – всего 0,00005%. Он попадает в атмосферу из вулканов.

Водороду принадлежит много других «рекордов».
Жидкий водород – самая легкая жидкость (плотность 0,067 г/см 3 при температуре –250°С),
Твердый водород – самое легкое твердое вещество (плотность 0,076 г/см 3).
Атомы водорода – самые маленькие из всех атомов . Однако при поглощении энергии электромагнитного излучения внешний электрон атома может удаляться от ядра все дальше и дальше. Поэтому возбужденный атом водорода теоретически может иметь любые размеры. А практически? В книге Мировые рекорды в химии сказано, что в межзвездных облаках якобы обнаружены по их спектрам атомы водорода диаметром 0,4 мм (они зафиксированы по спектральному переходу с 253-й на 252-ю орбиталь). Атомы таких размеров вполне можно увидеть невооруженным глазом! При этом дается ссылка на статью, опубликованную в 1991 в самом известном в мире журнале, посвященном химическому образованию – Journal of Chemical Education (он издается в США). Однако автор статьи ошибся – он завысил все размеры ровно в 100 раз (об этом сообщил тот же журнал год спустя). Значит, обнаруженные атомы водорода имеют диаметр «всего лишь» 0,004 мм, и такие атомы , даже если бы они был «твердыми», невооруженным глазом увидеть нельзя – только в микроскоп. Конечно, по атомным меркам и 0,004 мм – величина огромная, в десятки тысяч раз больше диаметра невозбужденного атома водорода.

Молекулы водорода тоже очень маленькие. Поэтому этот газ легко проходит через самые тонкие щели. Резиновый шарик, надутый водородом, «худеет» намного быстрее шарика, надутого воздухом: молекулы водорода понемногу просачиваются через мельчайшие поры в резине.

Если вдохнуть водород и начать разговаривать, то частота издаваемых звуков будет втрое выше обычной. Этого достаточно, чтобы звук даже низкого мужского голоса оказался неестественно высоким, напоминающим голос Буратино. Происходит это потому, что высота звука , издаваемая свистком, органной трубой или голосовым аппаратом человека, зависит не только от их размеров и материала стенок, но и от газа, которым они наполнены. Чем больше скорость звука в газе, тем выше его тон. Скорость звука зависит от массы молекул газа. Молекулы водорода значительно легче молекул азота и кислорода , из которых состоит воздух , и звук в водороде распространяется почти вчетверо быстрее, чем в воздухе. Однако вдыхать водород рискованно: в легких он неминуемо смешается с остатками воздуха и образует гремучую смесь. И если при выдохе поблизости окажется огонь... Вот какая история произошла с французским химиком, директором Парижского музея науки Пилатром де Розье (1756–1785). Как-то он решил проверить, что будет, если вдохнуть водород; до него никто такого эксперимента не проводил. Не заметив никакого эффекта, ученый решил убедиться, проник ли водород в легкие. Он еще раз хорошо вдохнул этот газ, а затем выдохнул его на огонь свечи, ожидая увидеть вспышку пламени. Однако водород в легких смелого экспериментатора был смешан с воздухом и произошел сильный взрыв. «Я думал, что у меня вылетели все зубы вместе с корнями», – писал он впоследствии, очень довольный опытом, который чуть не стоил ему жизни.

История получения дейтерия и трития

Дейтерий

Помимо «обычного» водорода (протия, от греческого protos – первый), в природе присутствует также его тяжелый изотоп – дейтерий (от латинского deuteros – второй) и в ничтожных количествах сверхтяжелый водород – тритий. Долгие и драматические поиски этих изотопов вначале не давали результата из-за недостаточной чувствительности приборов. В конце 1931 группа американских физиков – Г.Юри со своими учениками, Ф.Брикведде и Дж.Мэрфи, взяли 4 л жидкого водорода и подвергли его фракционной перегонке, получив в остатке всего 1 мл, т.е. уменьшив объем в 4 тысячи раз. Этот последний миллилитр жидкости после ее испарения и был исследован спектроскопическим методом. Опытный спектроскопист Юри заметил на спектрограмме обогащенного водорода новые очень слабые линии, отсутствующие у обычного водорода. При этом положение линий в спектре точно соответствовало проведенному им квантово-механическому расчету нуклида 2H (см. ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ).

После спектроскопического обнаружения дейтерия было предложено разделять изотопы водорода электролизом. Эксперименты показали, что при электролизе воды легкий водород действительно выделяется быстрее, чем тяжелый. Именно это открытие стало ключевым для получения тяжелого водорода. Статья, в которой сообщалось об открытии дейтерия, была напечатана весной 1932, а уже в июле были опубликованы результаты по электролитическому разделению изотопов. В 1934 за открытие тяжелого водорода Гарольд Клейтон Юри получил Нобелевскую премию по химии.

Тритий

17 марта 1934 в выходящем в Англии журнале «Nature» («Природа») была опубликована небольшая заметка, подписанная М.Л.Олифантом, П.Хартеком и Резерфордом (фамилия лорда Резерфорда не требовала при публикации инициалов!). Несмотря на скромное название заметки: Эффект трансмутации, полученный с тяжелым водородом, она сообщала миру о выдающемся результате – искусственном получении третьего изотопа водорода – трития. В 1946 известный авторитет в области ядерной физики, лауреат Нобелевской премии У.Ф.Либби предположил, что тритий непрерывно образуется в результате идущих в атмосфере ядерных реакций. Однако в природе трития так мало (1 атом 1Н на 1018 атомов 3Н), что обнаружить его удалось только по слабой радиоактивности (период полураспада 12,3 года).

Гидриды

Водород образует соединения – гидриды со многими элементами. В зависимости от второго элемента, гидриды очень сильно различаются по свойствам. Наиболее электроположительные элементы (щелочные и тяжелые щелочноземельные металлы) образуют так называемые солеобразные гидриды ионного характера. Они получаются в результате непосредственной реакции металла с водородом под давлением и при повышенной температуре (300–700°С), когда металл находится в расплавленном состоянии. Их кристаллическая решетка содержит катионы металлов и гидрид-анионы H– и построена аналогично решетке NaCl. При нагревании до температуры плавления солеобразные гидриды начинают проводить электрический ток , при этом, в отличие от электролиза водных растворов солей, водород выделяется не на катоде, а на положительно заряженном аноде. Солеобразные гидриды реагируют с водой с выделением водорода и образованием раствора щелочи, легко окисляются и кислородом и используются как сильные восстановители.

Ряд элементов образуют ковалентные гидриды, среди которых наиболее известны гидриды элементов IV–VI групп, например, метан CH 4 , аммиак NH 3 , сероводород H 2 S и т.п. Ковалентные гидриды обладают высокой реакционной способностью и являются восстановителями. Некоторые из этих гидридов малостабильны и разлагаются при нагревании или гидролизуются водой. Примером могут служить SiH 4 , GeH 4 , SnH 4 . С точки зрения строения интересны гидриды бора, например, В 2 Н 6 , В 6 Н 10 , В 10 Н 14 и др., в которых пара электронов связывает не два, как обычно, а три атома В–Н–В. К ковалентным относят и некоторые смешанные гидриды, например, литийалюминийгидрид LiAlH 4 , который нашел широкое применение в органической химии в качестве восстановителя. Гидриды германия, кремния , мышьяка используют для получения высокочистых полупроводниковых материалов.

Гидриды переходных металлов весьма разнообразны по свойствам и строению. Часто это соединения нестехиометрического состава, например, металлоподобные TiH 1,7 , LaH 2,87 и т.п. При образовании подобных гидридов водород сначала адсорбируется на поверхности металла, затем происходит его диссоциация на атомы, которые диффундируют вглубь кристаллической решетки металла, образуя соединения внедрения. Наибольший интерес представляют гидриды интерметаллических соединений, например, содержащие титан, никель, редкоземельные элементы. Число атомов водорода в единице объема такого гидрида может быть в пять раз больше, чем даже в чистом жидком водороде! Уже при комнатной температуре сплавы упомянутых металлов способны быстро поглощать значительные количества водорода, а при нагревании – выделять его. Таким образом получают обратимые «химические аккумуляторы» водорода, которые, в принципе, могут использоваться для создания двигателей, работающих на водородном топливе. Из других гидридов переходных металлов интересен гидрид урана постоянного состава UH 3 , который служит источником других соединений урана высокой чистоты.

Применение

Водород используют в основном для получения аммиака , который нужен для производства удобрений и многих других веществ. Из жидких растительных масел с помощью водорода получают твердые жиры, похожие на сливочное масло и другие животные жиры. Их используют в пищевой промышленности. При производстве изделий из кварцевого стекла требуется очень высокая температура . И здесь водород находит применение: горелка с водородно-кислородным пламенем дает температуру выше 2000 градусов, при которой кварц легко плавится.

В лабораториях и в промышленности широко используется реакция присоединения водорода к различным соединениям – гидрирование. Наиболее распространены реакции гидрирования кратных углерод-углеродных связей. Так, из ацетилена можно получить этилен или (при полном гидрировании) этан, из бензола – циклогексан, из жидкой непредельной олеиновой кислоты – твердую предельную стеариновую кислоту и т.д. Гидрированию подвергаются и другие классы органических соединений, при этом происходит их восстановление. Так, при гидрировании карбонильных соединений (альдегидов, кетонов, сложных эфиров) образуются соответствующие спирты; например, из ацетона получается изопропиловый спирт. При гидрировании нитросоединений образуются соответствующие амины.

Гидрирование молекулярным водородом часто проводят в присутствии катализаторов . В промышленности, как правило, используют гетерогенные катализаторы , к которым относятся металлы VIII группы периодической системы элементов – никель , платина , родий, палладий . Самый активный из этих катализаторов – платина ; с ее помощью можно гидрировать при комнатной температуре без давления даже ароматические соединения. Активность более дешевых катализаторов можно повысить, проводя реакцию гидрирования под давлением при повышенных температурах в специальных приборах – автоклавах. Так, для гидрирования ароматических соединений на никеле требуются давления до 200 атм и температура выше 150°С.

В лабораторной практике широко используют также различные способы некаталитического гидрирования. Один из них – действие водорода в момент выделения. Такой «активный водород» можно получить в реакции металлического натрия со спиртом или амальгамированного цинка с соляной кислотой. Значительное распространение в органическом синтезе получило гидрирование комплексными гидридами – борогидридом натрия NaBH 4 и алюмогидридом лития LiAlH 4 . Реакцию проводит в безводных средах, так как комплексные гидриды мгновенно гидролизуются.

Водород используют во многих химических лабораториях. Его хранят под давлением в стальных баллонах, которые для безопасности с помощью специальных хомутов прикрепляют к стене или даже выносят во двор, а газ поступает в лабораторию по тонкой трубке.

Введение

Управляемый термоядерный синтез (УТС) -- синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который, в отличие от взрывного термоядерного синтеза (используемого в термоядерном оружии), носит управляемый характер. Управляемый термоядерный синтез отличается от традиционной ядерной энергетики тем, что в последней используется реакция распада, в ходе которой из тяжёлых ядер получаются более лёгкие ядра. В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий(2 H) и тритий (3 H), а в более отдалённой перспективе гелий-3 (3 He) и бор-11 (11 B). Впервые задачу по управляемому термоядерному синтезу в Советском Союзе сформулировал и предложил для неё некоторое конструктивное решение советский физик Лаврентьев О. А.

Типы реакций

Реакция синтеза заключается в следующем: берутся два или больше атомных ядра и с применением некоторой силы сближаются настолько, что силы, действующие на таких расстояниях, преобладают над силами кулоновского отталкивания между одинаково заряженными ядрами, в результате чего формируется новое ядро. Оно будет иметь несколько меньшую массу, чем сумма масс исходных ядер, а разница становится энергией которая и выделяется в процессе реакции. Количество выделяемой энергии описывает известная формула E=mcІ. Более легкие атомные ядра проще свести на нужное расстояние, поэтому водород -- самый распространенный элемент во Вселенной -- является наилучшим горючим для реакции синтеза.

Установлено, что смесь двух изотопов, дейтерия и трития, требует менее всего энергии для реакции синтеза по сравнению с энергией, выделяемой во время реакции. Однако, хотя смесь дейтерия и трития (D-T) является предметом большинства исследований синтеза, она в любом случае не является единственным видом потенциального горючего. Другие смеси могут быть проще в производстве; их реакция может надежнее контролироваться, или, что более важно, производить меньше нейтронов. Особенный интерес вызывают так называемые "безнейтронные" реакции, поскольку успешное промышленное использование такого горючего будет означать отсутствие долговременного радиоактивного загрязнения материалов и конструкции реактора, что, в свою очередь, могло бы положительно повлиять на общественное мнение и на общую стоимость эксплуатации реактора, существенно уменьшив затраты на его декомиссию. Проблемой остается то, что реакцию синтеза с использованием альтернативных видов горючего намного сложнее поддерживать, потому D-T реакция считается только необходимым первым шагом.

Управляемый термоядерный синтез может использовать различные виды термоядерных реакций в зависимости от вида применяемого топлива.

Реакция дейтерий + тритий (Топливо D-T)

Самая легко осуществимая реакция -- дейтерий + тритий:

2 H + 3 H = 4 He + n при энергетическом выходе 17,6 МэВ

Такая реакция наиболее легко осуществима с точки зрения современных технологий, даёт значительный выход энергии, топливные компоненты дешевы. Недостаток -- выход нежелательной нейтронной радиации.

Два ядра: дейтерия и трития сливаются, с образованием ядра гелия (альфа-частица) и высокоэнергетического нейтрона.

Реакция дейтерий + гелий-3

Существенно сложнее, на пределе возможного, осуществить реакцию дейтерий + гелий-3

2 H + 3 He = 4 He + p. при энергетическом выходе 18,4 МэВ

Условия её достижения значительно сложнее. Гелий-3, кроме того, является редким и чрезвычайно дорогим изотопом. В промышленных масштабах в настоящее время не производится. Однако может быть получен из трития, получаемого в свою очередь на атомных электростанциях.

Сложность проведения термоядерной реакции можно характеризовать тройным произведением nTt (плотность на температуру на время удержания). По этому параметру реакция D-3He примерно в 100 раз сложнее, чем D-T.

Реакция между ядрами дейтерия (D-D, монотопливо)

Также возможны реакции между ядрами дейтерия, они идут немного труднее реакции с участием гелия-3:

В дополнение к основной реакции в ДД-плазме также происходят:

Эти реакции медленно протекают параллельно с реакцией дейтерий + гелий-3, а образовавшиеся в ходе них тритий и гелий-3 с большой вероятностью немедленно реагируют с дейтерием

"Безнейтронные" реакции

Наиболее перспективны так называемые "безнейтронные" реакции, так как порождаемый термоядерным синтезом нейтронный поток (например, в реакции дейтерий-тритий) уносит значительную часть мощности и порождает наведенную радиоактивность в конструкции реактора. Реакция дейтерий + гелий-3 является перспективной в том числе и по причине отсутствия нейтронного выхода.

Существуют три изотопные формы водорода: протий дейтерий и тритий разд. 1.1 и 4.1). В природном водороде содержится 99,985% изотопа , остальные 0,015% приходятся на долю дейтерия. Тритий представляет собой неустойчивый радиоактивный изотоп и поэтому встречается лишь в виде следов. Он испускает Р-частицы и имеет период полураспада 12,3 года (см. разд. 1.3).

Все изотопные формы водорода обладают практически одинаковыми химическими свойствами. Однако они различаются по физическим свойствам. В табл. 12.4 указаны некоторые физические свойства водорода и дейтерия.

Таблица 12.4. Физические свойства

Для каждого соединения водорода существует его дейтериевый аналог. Важнейшим из них является оксид дейтерия так называемая тяжелая вода. Она используется в качестве замедлителя в ядерных реакторах некоторых типов (см. разд. 1.3).

Оксид дейтерия получают электролизом воды. По мере того как на катоде происходит выделение остающаяся вода обогащается оксидом дейтерия. В среднем этот метод позволяет получать из 100 л воды .

Другие соединения дейтерия обычно получают из оксида дейтерия, например

Атомарный водород

Водород, получаемый описанными выше лабораторными методами, во всех случаях представляет собой газ, состоящий из двухатомных молекул , т. е. молекулярный водород. Его можно диссоциировать на агомы, используя какой-либо источник высокой энергии, например газоразрядную трубку, содержащую водород при низком давлении. Водород можно также атомизировать в электрической дуге, образуемой между вольфрамовыми электродами. Атомы водорода рекомбинируют на поверхности металла, и при этом выделяется столь большая энергия, что это приводит к

повышению температуры приблизительно до 3500°С. Этот эффект используется для водородно-дуговой сварки металлов.

Атомарный водород - сильный восстановитель. Он восстанавливает оксиды и хлориды металлов до свободных металлов.

Водород в момент выделения

Газообразный водород, т. е. молекулярный водород, является плохим восстановителем. Это обусловлено его большой энергией связи, равной Например, при пропускании газообразного водорода через раствор, содержащий ионы их восстановления не происходит. Однако, если образование водорода происходит непосредственно в растворе, содержащем ионы эти ионы немедленно восстанавливаются в ионы

Для того чтобы водород образовывался непосредственно в растворе, содержащем ионы туда добавляют разбавленную серную кислоту и цинк. Водород, образующийся в таких условиях, называют водород в момент выделения

Ортоводород и параводород

Два протона в молекуле водорода связаны между собой двумя , находящимися на -связывающей орбитали (см. разд. 2.1). Эти два электрона, находящиеся на указанной орбитали, должны иметь противоположно направленные спины. Однако в отличие от электронов два протона в молекуле водорода могут иметь либо параллельные, либо противоположно направленные спины. Разновидность молекулярного водорода с параллельными спинами протонов двух ядер называется ортоводородом, а разновидность с противоположно направленными спинами протонов двух ядер - параводородом (рис. 12.1).

Обычный водород представляет собой смесь ортоводорода и параводорода. При очень низких температурах в нем преобладает параводород. По мере повышения температуры доля ортоводорода возрастает, и при 25°С смесь содержит приблизительно 75% ортоводорода и 25% параводорода.

Параводород можно получать, пропуская обычный водород через трубку, наполненную древесным углем, а затем охлаждая его до температуры жидкого воздуха. Ортоводород и параводород совершенно одинаковы по своим химическим свойствам, но несколько различаются по температурам плавления и кипения (см. табл. 12.5).

Рис. 12.1. Ортоводород и параводород.

Таблица 12.5. Температуры плавления и кипения ортоводорода и параводорода





Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта