Главная » Звезды » Случайные величины. Что такое случайная величина

Случайные величины. Что такое случайная величина

Расширением понятия случайных событий, состоящих в появлении некоторых числовых значений в результате эксперимента, является случайная величина Х.

Определение. Случайной называют величину, принимающую в результате эксперимента одно только значение из некоторой их совокупности и неизвестное заранее, какое именно.

Случайная величина , к примеру, представляет собой обоснованную модель описания геологических данных, учитывающую влияние различных факторов на физическое поле .

Как и результат отдельного эксперимента, точное значение случайной величины предсказать нельзя, можно лишь установить ее статистические закономерности, т.е. определить вероятности значений случайной величины. Например, измерения физических свойств горных пород являются наблюдениями соответствующих случайных величин.

Среди случайных величин, с которыми приходится встречаться геологу, можно выделить два основных типа: величины дискретные и величины непрерывные .

Определение. Дискретной случайной величиной называется такая, которая может принимать конечное или бесконечное счетное множество значений.

В качестве типичных примеров дискретной случайной величины могут выступать все результаты полевых работ , все результаты экспериментов, привезенные c поля образцы и пр.

Всевозможные значений случайной величины образуют полную группу событий, т.е. , где - конечное или бесконечное. Поэтому можно говорить, что случайная величина обобщает понятие случайного события.

Пусть в результате исследований был получен следующий ряд данных по количественному составу некоторой породы: 4; 3; 1; 2; 5; 4; 2; 2; 3; 1; 5; 4; 3; 5; 5; 2; 5; 5; 6; 1. Всего было проведено 20 испытаний. Для того, чтобы с данными было удобно работать, их преобразовали: расположили полученные значения по возрастанию и подсчитали количество появления каждого из значений. В результате получили (Таблица 7.1):

Определение . Распределение данных по возрастанию называется ранжированием .

Определение . Наблюдаемое значение некоторого признака случайной величины называется вариантом.

Определение . Ряд, составленный из вариант, называется вариационным рядом .

Определение . Изменение некоторого признака случайной величины называется варьированным .

Определение . Число, показывающее сколько раз варьируется данная варианта, называется частотой и обозначается .

Определение. Вероятность появления данной варианты равно отношению частоты к общей сумме вариационного ряда

(1)

С учетом введенных определений перепишем таблицу 7.1 .

Таблица 7.2. Ранжированный ряд
Вариант 1 2 3 4 5 6
Частота 3 4 3 3 6 1
Вероятность 3/20 4/20 3/20 3/20 6/20 1/20

При статистическом анализе экспериментальных данных главным образом используется дискретные величины. В таблице 7.3 приведены основные числовые характеристики этих величин, имеющих важное практическое значение при обработке экспериментальных данных.

Таблица 7.3. Числовые характеристики случайных величин
N п/п Характеристика (параметр) случайной величины и ее обозначение Формула для нахождения характеристики случайной величины Примечание
1 Математическое ожидание
(2)
Характеризует положение случайной величины на числовой оси
2 Среднее значение
(3)
Если случайная величина независимая, то
3 Мода Это такое значение , для которого наиболь-шее Равна наиболее часто встречающемуся значению . Если таких значений в вариационном ряду несколько, то не определяется.
4 Медиана Если четное, то Если нечетное, то Это такое значение, которое находится в центре ранжированного ряда.
5 Дисперсия Характеризует действительное рассеяние случайной величины вокруг среднего значения.
7 Коэффициент вариации
(6)
Наряду с дисперсией характеризует изменчивость случайной величины
8 Центрированное нормированное уклонение
Понятие случайной величины. Дискретные и непрерывные случайные величины. Функция распределения вероятностей и ее свойства. Плотность распределения вероятности и ее свойства. Числовые характеристики случайных величин: математическое ожидание, дисперсия и их свойства, среднее квадратическое отклонение, мода и медиана; начальные и центральные моменты, асимметрия и эксцесс. Числовые характеристики среднего арифметического n независимых случайных величин.

Понятие случайной величины

Случайной называется величина, которая в результате испытаний принимает то или иное (но при этом только одно) возможное значение, заранее неизвестное, меняющееся от испытания к испытанию и зависящее от случайных обстоятельств. В отличие от случайного события, являющегося качественной характеристикой случайного результата испытания, случайная величина характеризует результат испытания количественно. Примерами случайной величины могут служить размер обрабатываемой детали, погрешность результата измерения какого-либо параметра изделия или среды. Среди случайных величин, с которыми приходится встречаться на практике, можно выделить два основных типа: дискретные и непрерывные.

Дискретной называется случайная величина, принимающая конечное или бесконечное счетное множество значений. Например: частота попаданий при трех выстрелах; число бракованных изделий в партии из n штук; число вызовов, поступающих на телефонную станцию в течение суток; число отказов элементов прибора за определенный промежуток времени при испытании его на надежность; число выстрелов до первого попадания в цель и т. д.

Непрерывной называется случайная величина, которая может принимать любые значения из некоторого конечного или бесконечного интервала. Очевидно, что число возможных значений непрерывной случайной величины бесконечно. Например: ошибка при измерении дальности радиолокатора; время безотказной работы микросхемы; погрешность изготовления деталей; концентрация соли в морской воде и т. д.

Случайные величины обычно обозначают буквами X,Y и т. д., а их возможные значения - x,y и т. д. Для задания случайной величины недостаточно перечислить все ее возможные значения. Необходимо также знать, как часто могут появиться те или иные ее значения в результате испытаний при одних и тех же условиях, т. е. нужно задать вероятности их появления. Совокупность всех возможных значений случайной величины и соответствующих им вероятностей составляет распределение случайной величины.

Законы распределения случайной величины

Законом распределения случайной величины называется соответствие между возможными значениями случайной величины и соответствующими им вероятностями. Про случайную величину говорят, что она подчиняется данному закону распределения. Две случайные величины называются независимыми , если закон распределения одной из них не зависит то того, какие возможные значения приняла другая величина. В противном случае случайные величины называются зависимыми . Несколько случайных величин называются взаимно независимыми , если законы распределения любого числа из них не зависят от того, какие возможные значения приняли остальные величины.

Закон распределения случайной величины может быть задан в виде таблицы, функции распределения либо плотности распределения. Таблица, содержащая возможные значения случайной величины и соответствующие вероятности, является простейшей формой задания закона распределения случайной величины.

\begin{array}{|c|c|c|c|c|c|c|}\hline{X}&x_1&x_2&x_3&\cdots&x_{n-1}&x_n\\\hline{P}&p_1&p_2&p_3&\cdots&p_{n-1}&p_n\\\hline\end{array}

Табличное задание закона распределения можно использовать только для дискретной случайной величины с конечным числом возможных значений. Табличная форма задания закона случайной величины называется также рядом распределения.

Для наглядности ряд распределения представляют графически. При графическом изображении в прямоугольной системе координат по оси абсцисс откладывают все возможные значения случайной величины, а по оси ординат - соответствующие вероятности. Точки (x_i,p_i) , соединенные прямолинейными отрезками, называют многоугольником распределения (рис. 5). Следует помнить, что соединение точек (x_i,p_i) выполняется только с целью наглядности, так как в промежутках между x_1 и x_2 , x_2 и x_3 и т. д. не существует значений, которые может принимать случайная величина X , поэтому вероятности её появления в этих промежутках равны нулю.

Многоугольник распределения, как и ряд распределения, является одной из форм задания закона распределения дискретной случайной величины. Они могут иметь различную форму, однако все обладают одним общим свойством: сумма ординат вершин многоугольника распределения, представляющая собой сумму вероятностей всех возможных значений случайной величины, всегда равна единице. Это свойство следует из того, что все возможные значения случайной величины X образуют полную группу несовместных событий, сумма вероятностей которых равна единице.

Функция распределения вероятностей и ее свойства

Функция распределения является наиболее общей формой задания закона распределения. Она используется для задания как дискретных, так и непрерывных случайных величин. Обычно ее обозначают F(x) . Функция распределения определяет вероятность того, что случайная величина X принимает значения, меньшие фиксированного действительного числа x , т. е. F(x)=P\{Xинтегральной функцией распределения.

Геометрическая интерпретация функции распределения очень проста. Если случайную величину рассматривать как случайную точку X оси Ox (рис. 6), которая в результате испытания может занять то или иное положение на оси, то функция распределения F(x) - это вероятность того, что случайная точка X в результате испытания попадет левее точки x .

Для дискретной случайной величины X , которая может принимать значения , функция распределения имеет вид

F(x)=\sum\limits_{x_i
где неравенство x_i

Непрерывная случайная величина имеет непрерывную функцию распределения, график этой функции имеет форму плавной кривой (рис. 8).

Рассмотрим общие свойства функций распределения.

Свойство 1. Функция распределения - неотрицательная, функция, заключенная между нулем и единицей:

0\leqslant{F(x)}\leqslant1

Справедливость этого свойства вытекает из того, что функция распределения F(x) определена как вероятность случайного события, состоящего в том, что X

Свойство 2. Вероятность попадания случайной величины в интервал [\alpha;\beta) равна разности значений функции распределения на концах этого интервала, т. е.

P\{\alpha\leqslant{X}<\beta\}=F(\beta)-F(\alpha)

Отсюда следует, что вероятность любого отдельного значения непрерывной случайной величины равна нулю.

Свойство 3. Функция распределения случайной величины есть неубывающая функция, т. е. F(\beta)\geqslant{F(\alpha)} .

Свойство 4. На минус бесконечности функция распределения равна нулю, а на плюс бесконечности - единице, т. е. \lim_{x\to-\infty}F(x)=0 и \lim_{x\to+\infty}F(x)=1 .

Пример 1. Функция распределения непрерывной случайной величины задана выражением

F(x)=\begin{cases}0,&x\leqslant1\\a(x-1)^2,&10\end{cases}.

Найти коэффициент a и построить график F(x) . Определить вероятность того, что случайная величина X в результате опыта примет значение на интервале .

Решение. Так как функция распределения непрерывной случайной величины X непрерывна, то при x=3 получим a(3-1)^2=1 . Отсюда a=\frac{1}{4} . График функции F(x) изображен на рис. 9.

Исходя из второго свойства функции распределения, имеем

P\{1\leqslant{X}<2\}=F(2)-F(1)=\frac{1}{4}.

Плотность распределения вероятности и ее свойства

Функция распределения непрерывной случайной величины является ее вероятностной характеристикой. Но она имеет недостаток, заключающийся в том, что по ней трудно судить о характере распределения случайной величины в небольшой окрестности той или другой точки числовой оси. Более наглядное представление о характере распределения непрерывной случайной величины дает функция, которая называется плотностью распределения вероятности, или дифференциальной функцией распределения случайной величины.

Плотность распределения f(x) равна производной от функции распределения F(x) , т. е.

F(x)=F"(x).

Смысл плотности распределения f(x) состоит в том, что она указывает на то, как часто случайная величина X появляется в некоторой окрестности точки x при повторении опытов. Кривая, изображающая плотность распределения f(x) случайной величины, называется кривой распределения.

Рассмотрим свойства плотности распределения.

Свойство 1. Плотность распределения неотрицательна, т. е.

F(x)\geqslant0.

Свойство 2. Функция распределения случайной величины равна интегралу от плотности в интервале от -\infty до x , т. е.

F(x)=\int\limits_{-\infty}^{x}f(x)\,dx.

Свойство 3. Вероятность попадания непрерывной случайной величины X на участок (\alpha;\beta) равна интегралу от плотности распределения, взятому по этому участку, т. е.

P\{\alpha\leqslant{X}\leqslant\beta\}=\int\limits_{\alpha}^{\beta}f(x)\,dx.

Свойство 4. Интеграл в бесконечных пределах от плотности распределения равен единице:

\int\limits_{-\infty}^{+\infty}f(x)\,dx=1.

Пример 2. Случайная величина X подчинена закону распределения с плотностью

F(x)=\begin{cases}0,&x<0\\a\sin{x},&0\pi\end{cases}

Определить коэффициент а; построить график плотности распределения; найти вероятность попадания случайной величины на участок от 0 до \frac{\pi}{2} определить функцию распределения и построить ее график.

\int\limits_{-\infty}^{+\infty}f(x)\,dx=a\int\limits_{0}^{\pi}\sin{x}\,dx=\Bigl.{-a\cos{x}}\Bigl|_{0}^{\pi}=2a.

Учитывая свойство 4 плотности распределения, находим a=\frac{1}{2} . Следовательно, плотность распределения можно выразить так:

F(x)=\begin{cases}0,&x<0\\\dfrac{1}{2}\sin{x},&0\pi\end{cases}.

График плотности распределения на рис. 10. По свойству 3, имеем

P\!\left\{0

Для определения функции распределения воспользуемся свойством 2:

F(x)=\frac{1}{2}\int\limits_{0}^{x}\sin{x}\,dx=\Bigl.{\-\frac{1}{2}\cos{x}}\Bigl|_{0}^{x}=\frac{1}{2}-\frac{1}{2}\cos{x}.

Таким образом, имеем

F(x)=\begin{cases}0,&x<0\\\dfrac{1}{2}-\dfrac{1}{2}\cos{x},&0\pi\end{cases}.

График функции распределения изображен на рис. 11

Числовые характеристики случайных величин

Закон распределения полностью характеризует случайную величину с вероятностной точки зрения. Но при решении ряда практических задач нет необходимости знать все возможные значения случайной величины и соответствующие им вероятности, а удобнее пользоваться некоторыми количественными показателями. Такие показатели называются числовыми характеристиками случайной величины. Основными из них являются математическое ожидание, дисперсия, моменты различных порядков, мода и медиана.

Математическое ожидание иногда называют средним значением случайной величины. Рассмотрим дискретную случайную величину X , принимающую значения x_1,x_2,\ldots,x_n с вероятностями соответственно p_1,p_2,\ldots,p_n Определим среднюю арифметическую значений случайной величины, взвешенных по вероятностям их появлений. Таким образом, вычислим среднее значение случайной величины, или ее математическое ожидание M(X) :

M(X)=\frac{x_1p_1+x_2p_2+\cdots+x_np_n}{p_1+p_2+\cdots+p_n}=\frac{\sum\limits_{i=1}^{n}x_ip_i}{\sum\limits_{i=1}^{n}p_i}.

Учитывая, что \sum\limits_{i=1}^{n}p_i=1 получаем

M(X)=\sum\limits_{i=1}^{n}x_ip_i}.~~~~~~~(4.1)

Итак, математическим ожиданием дискретной случайной величины называется сумма произведений всех ее возможных значений на соответствующие вероятности.

Для непрерывной случайной величины математическое ожидание

M(X)=\int\limits_{-\infty}^{\infty}xf(x)\,dx.

Математическое ожидание непрерывной случайной величины X , возможные значения которой принадлежат отрезку ,

M(X)=\int\limits_{a}^{b}xf(x)\,dx.~~~~~~~(4.2)

Используя функцию распределения вероятностей F(x) , математическое ожидание случайной величины можно выразить так:

M(X)=\int\limits_{-\infty}^{\infty}x\,d(F(x)).

Свойства математического ожидания

Свойство 1. Математическое ожидание суммы двух случайных величин равно сумме их математических ожиданий:

M(X+Y)=M(X)+M(Y).

Свойство 2. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

M(XY)=M(X)M(Y).

Свойство 3. Математическое ожидание постоянной величины равно самой постоянной:

M(c)=c.

Свойство 4. Постоянный множитель случайной величины можно вынести за знак математического ожидания:

M(cX)=cM(X).

Свойство 5. Математическое ожидание отклонения случайной величины от ее математического ожидания равно нулю:

M(X-M(X))=0.

Пример 3. Найти математическое ожидание количества бракованных изделий в выборке из пяти изделий, если случайная величина X (количество бракованных изделий) задана рядом распределения.

\begin{array}{|c|c|c|c|c|c|c|}\hline{X}&0&1&2&3&4&5\\\hline{P}&0,\!2373&0,\!3955&0,\!2637&0,\!0879&0,\!0146&0,\!0010\\\hline\end{array}

Решение. По формуле (4.1) находим

M(X)=0\cdot0,\!2373+1\cdot0,\!3955+2\cdot0,\!2637+3\cdot0,\!0879+4\cdot0,\!0146+5\cdot0,\!0010 =1,\!25.

Модой M_0 дискретной случайной величины называется наиболее вероятное ее значение.

Модой M_0 непрерывной случайной величины называется такое ее значение, которому соответствует наибольшее значение плотности распределения. Геометрически моду интерпретируют как абсциссу точки глобального максимума кривой распределения (рис. 12).

Медианой M_e случайной величины называется такое ее значение, для которого справедливо равенство

P\{XM_e\}.

С геометрической точки зрения медиана - это абсцисса точки, в которой площадь фигуры, ограниченной кривой распределения вероятностей и осью абсцисс, делится пополам (рис. 12). Так как вся площадь, ограниченная кривой распределения и осью абсцисс, равна единице, то функция распределения в точке, соответствующей медиане, равна 0,5, т. е.

F(M_e)=P\{X

С помощью дисперсии и среднеквадратического отклонения можно судить о рассеивании случайной величины вокруг математического ожидания. В качестве меры рассеивания случайной величины используют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания, которое называют дисперсией случайной величины X и обозначают D[X] :

D[X]=M((X-M(X))^2).

Для дискретной случайной величины дисперсия равна сумме произведений квадратов отклонений значений случайной величины от ее математического ожидания на соответствующие вероятности:

D[X]=\sum\limits_{i=1}^{n}(x_i-M(X))^2p_i.

Для непрерывной случайной величины, закон распределения которой задан плотностью распределения вероятности f(x) , дисперсия

D[X]=\int\limits_{-\infty}^{+\infty}(x-M(X))^2f(x)\,dx.

Размерность дисперсии равна квадрату размерности случайной величины и поэтому ее нельзя интерпретировать геометрически. Этих недостатков лишено среднее квадратическое отклонение случайной величины, которое вычисляется по формуле

\sigma=\sqrt{D[X]}.

Свойства дисперсии случайных величин

Свойство 1. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин:

D=D[X]+D[Y].

Свойство 2. Дисперсия случайной величины равна разности между математическим ожиданием квадрата случайной величины X и квадратом ее математического ожидания:

D[X]=M(X^2)-(M(X))^2.~~~~~~~(4.3).

Свойство 3. Дисперсия постоянной величины равна нулю:

D[c]=0.

Свойство 4. Постоянный множитель случайной величины, можно выносить за знак дисперсии, предварительно возведя его в квадрат:

D=c^2D[X].

Свойство 5. Дисперсия произведения двух независимых случайных величин X и Y определяется по формуле

D=D[X]D[Y]+(M(X))^2D[Y]+(M(X))^2D[X].

Пример 4. Вычислить дисперсию количества бракованных изделий для распределения примера 3.

Решение. По определению дисперсии

Обобщением основных числовых характеристик случайной величины является понятие моментов случайной величины.

Начальным моментом q-го порядка случайной величины называют математическое ожидание величины X^q :

Начальный момент первого порядка представляет собой математическое ожидание, а центральный момент второго порядка - дисперсию случайной величины.

Нормированный центральный момент третьего порядка служит характеристикой скошенности или асимметрии распределения (коэффициент асимметрии ):

A_s=\frac{\mu_{{}_3}}{\sigma^3}.

Нормированный центральный момент четвертого порядка служит характеристикой островершинности или плосковершинности распределения (эксцесс ):

E=\frac{\mu_{{}_4}}{\sigma^4}-3.

Пример 5. Случайная величина X задана плотностью распределения вероятностей

F(x)=\begin{cases}0,&x<0;\\ax^2,&02.\end{cases}.

Найти коэффициент a , математическое ожидание, дисперсию, асимметрию и эксцесс.

Решение. Площадь, ограниченная кривой распределения, численно равна

\int\limits_{0}^{2}f(x)\,dx=a\int\limits_{0}^{2}x^2\,dx=\left.{a\,\frac{x^3}{3}}\right|_{0}^{2}=\frac{8}{3}\,a.

Учитывая, что эта площадь должна быть равна единице, находим a=\frac{3}{8} . По формуле (4.2) найдем математическое ожидание:

M(X)=\int\limits_{0}^{2}xf(x)\,dx=\frac{3}{8}\int\limits_{0}^{2}x^3\,dx=\left.{\frac{3}{8}\cdot\frac{x^4}{4}}\right|_{0}^{2}=1,\!5.

Дисперсию определим по формуле (4.3). Для этого найдем сначала математическое ожидание квадрата случайной величины:

M(X^2)=\int\limits_{0}^{2}x^2f(x)\,dx=\frac{3}{8}\int\limits_{0}^{2}x^4\,dx=\left.{\frac{3}{8}\cdot\frac{x^5}{5}}\right|_{0}^{2}=2,\!4.

Таким образом,

\begin{aligned}D(X)&=M(X^2)-(M(X))^2=2,\!4-(1,\!5)^2=0,\!15;\\ \sigma(X)&=\sqrt{D(X)}=\sqrt{0,\!15}\approx0,\!3873.\end{aligned}

Используя начальные моменты, вычисляем центральные моменты третьего и четвертого порядка:

\begin{aligned}\nu_1&=M(X)=1,\!5;\quad\nu_2=M(X^2)=2,\!4.\\ \nu_3&=M(X^3)=\int\limits_0^2{x^3f(x)\,dx}=\frac{3}{8}\int\limits_0^2{x^5\,dx}=\left.{\frac{3}{8}\cdot\frac{x^6}{6}}\right|_0^2=4;\\ \nu_4&=M(X^4)=\int\limits_0^2{x^4f(x)\,dx}=\frac{3}{8}\int\limits_0^2{x^6\,dx}=\left.{\frac{3}{8}\cdot\frac{x^7}{7}}\right|_0^2\approx6,\!8571;\\ \mu_3&=\nu_3-3\nu_1\nu_2+2\nu_1^3=4-3\cdot1,\!5\cdot2,\!4+2\cdot(1,\!5)^3=-0,\!05.\\ \mu_4&=\nu_4-4\nu_1\nu_3+6\nu_1^2\nu_2-3\nu_1^4=\\&=6,\!8571-4\cdot1,\!5\cdot4+6\cdot(1,\!5)^2\cdot2,\!4-3\cdot(1,\!5)^4=0,\!0696.\\ A_s&=\frac{\mu_3}{\sigma^3}=-\frac{0,\!05}{(0,\!3873)^3}=-0,\!86.\\ E&=\frac{\mu_4}{\sigma^4}-3=\frac{0,\!0696}{(0,\!3873)^4}-3=-0,\!093.\end{aligned}

Числовые характеристики среднего арифметического n независимых случайных величин

Пусть x_1,x_2,\ldots,x_n - значения случайной величины X , полученные при n независимых испытаниях. Математическое ожидание случайной величины равно M(X) , а ее дисперсия D[X] . Эти значения можно рассматривать как независимые случайные величины X_1,X_2,\ldots,X_n с одинаковыми математическими ожиданиями и дисперсиями:

M(X_i)=M(X); \quad D=D[X],~~i=1,2,\ldots,n.

Средняя арифметическая этих случайных величин

\overline{X}=\sum\limits_{i=1}^{n}\frac{X_i}{n}.

Используя свойства математического ожидания и дисперсии случайной величины, можно записать:

\begin{aligned}M(\overline{X})&=M\!\left(\frac{1}{n}\sum\limits_{i=1}^{n}X_i\right)=\frac{1}{n}\sum\limits_{i=1}^{n}M(X_i)=M(X).~~~~~~~(4.4)\\ D[\overline{X}]&=D\!\left[\frac{1}{n}\sum\limits_{i=1}^{n}X_i\right]=\frac{1}{n^2}\sum\limits_{i=1}^{n}D=\frac{D[X]}{n}.~~~~~~~(4.5)\end{aligned}


Перейти к следующему разделу
Многомерные случайные величины
В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Если классическая теория вероятностей изучала, в основном, события и вероятность их появления (наступления), то современная теория вероятностей изучает случайные явления и их закономерности с помощью случайных величин. Понятие случайной величины, таким образом, является основополагающим в теории вероятностей. Ещё ранее проводились события, состоящие в появлении того или иного числа. Например, при бросании игральной кости могли появиться числа 1, 2, 3, 4, 5, 6. Наперёд определить число появившихся очков невозможно, поскольку оно зависит от многих случайных причин, которые полностью не могут быть учтены. В этом смысле число очков есть величина случайная, а числа 1, 2, 3, 4, 5 и 6 есть возможные значения этой величины.

Случайной величиной называется величина, которая в результате опыта принимает то или иное (причём, одно и только одно) возможное числовое значение, наперёд неизвестное и зависящее от случайных причин, которые заранее не могут быть учтены.

Случайны величины принято, обычно, обозначать прописными буквами , а их возможное значения - соответствующими строчными буквамиНапример, если случайная величинаимеет три возможных значения, то они, соответственно, обозначаются так:. Для удобства будем писать:.

ПРИМЕР 1 . Число родившихся мальчиков среди ста новорожденных есть величина случайная, которая имеет следующие возможные значения: 0, 1, 2, ..., 100.

ПРИМЕР 2 . Расстояние, которое пролетит снаряд при выстреле из орудия, есть также величина случайная. Действительно, расстояние зависит не только от установки прицела, но и от многих других причин (силы и направления ветра, температуры и т. п.), которые не могут быть полностью учтены. Возможные значения этой величины, очевидно, принадлежат некоторому промежутку (интервалу) .

Заметим, что с каждым случайным событием можно связать какую-либо случайную величину, принимающую значения из R. Например, опыт - выстрел по мишени; событие - попадание в мишень; случайная величина - число попаданий в мишень.

Вернёмся к примерам, приведённым выше. В первом из них случайная величина могла принять одно из следующих возможных значений: 0, 1, 2,..., 100. Эти значения отделены одно от другого промежутками, в которых нет возможных значений. Таким образом, в этом примере случайная величина принимает отдельные, изолированные, возможные значения.

Во втором примере случайная величина могла принять любое из значений промежутка . Здесь нельзя отделить одно возможное значение от другого промежутком, не содержащим возможных значений случайной величины.

Уже из сказанного можно заключить о целесообразности различать случайные величины, принимающие лишь отдельные, изолированные значения и случайные величины, возможные значения которых сплошь заполняют некоторый промежуток.

Дискретной ( прерывной ) случайной величиной называется такая случайная величина, которая принимает конечное или счётное множество 1 различных значений. Другими словами - это такая случайная величина, которая принимает отдельные, изолированные возможные значения с определенными вероятностями.

Число возможных значений дискретной случайной величины может быть конечным или бесконечным.

Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка действительной числовой оси.

Очевидно, во-первых, число возможных значений непрерывной случайной величины – бесконечно. Во-вторых, дискретная случайная величина является частным случаем непрерывной случайной величины.

    Закон распределения вероятностей

I . Закон распределения вероятностей дискретной случайной величины

На первый взгляд может показаться, что для задания дискретной случайной величины достаточно перечислить все её возможные значения. В действительности это не так: различные случайные величины иногда могут иметь одинаковые перечни возможных значений, а соответствующие вероятности этих значений – различные. Поэтому для полной характеристики мало знать значения случайной величины, нужно ещё знать, как часто эти значения встречаются в опыте при его повторении, т.е. нужно ещё указать вероятности их появления.

Рассмотрим случайную величину . Появление каждого их возможных значенийсвидетельствует о том, что произошло соответственно одно из событий, которые образуют полную группу 2 . Допустим, что вероятности этих событий известны:

, . . . , ,

Тогда: соответствие, устанавливающее связь между возможными значениями случайной величины и их вероятностями, называется законом распределения вероятностей случайной величины , или просто – законом распределения случайной величины.

Закон распределения вероятностей данной случайной величины можно задать таблично (ряд распределения), аналитически (в виде формулы) и графически.

При табличном задании закона распределения дискретной случайной величины первая строка таблицы содержит возможные значения, а вторая - их вероятности, т.е.


В целях наглядности закон распределения дискретной случайной величины можно изобразить и графически, для чего в прямоугольной системе координат строят точки , а затем соединяют их отрезками прямых. Полученную фигуру называют многоугольником распределения. При этом, сумма ординатпостроенного многоугольника равна единице.

Аналитически закон распределения дискретной случайной величины можно записать, например, используя формулу Бернулли для схемы повторения независимых опытов. Так, если обозначить случайную величину, которой является число бракованных деталей в выборке, через , то возможные её значениябудут 0, 1, 2, . . . ,. Тогда, очевидно, формула Бернулли будет устанавливать зависимость между значениямии вероятностью() их появления, где

,

что о определяет закон распределения данной случайной величины.

II . Закон распределения вероятностей непрерывной случайной величины

Вспомним, что дискретная случайная величина задаётся перечнем всех её возможных значений и их вероятностей. Такой способ задания не является общим: он не применим, например, для непрерывных случайных величин.

Действительно, рассмотрим случайную величину , возможные значения которой сплошь заполняют интервал. Можно ли составить перечень всех возможных значений? Очевидно, что этого сделать нельзя. Этот пример указывает на целесообразность дать общий способ задания любых типов случайных величин (как уже отмечалось, дискретная случайная величина является частным случаем непрерывной случайной величины). С этой целью вводятинтегральную функцию распределения.

Пусть – переменная, принимающая произвольные действительные значения (на оси:) . Рассмотрим событие, состоящее в том, что случайная величинапримет значение меньшее. Тогда, вероятностьсобытиязависит от, т.е. является функцией от. Эту функцию принято обозначать черези называть функцией распределения случайной величины или, ещё – интегральной функцией распределения. Другими словами:

интегральной функцией распределения называют функцию , определяющую для каждого значенияR вероятность того, что случайная величина примет значение, меньшее, т.е.

.

Геометрически это равенство можно истолковывать так: есть вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки.

Свойства интегральной функции :


Доказательство этого свойства вытекает из определения интегральной функции как вероятности: вероятность всегда есть неотрицательное число, не превышающее единицы.

Действительно, пусть – событие, состоящее в том, что случайная величинапримет значение меньшее; аналогично,
– событие, состоящее в том, что случайная величинапримет значение меньшее. Другими словами:

Следовательно, если , то . Значит (объяснить - почему?)или, что то же самое:

Что и требовалось показать.

Это свойство вполне очевидно. Так, если - достоверное событие, а– невозможное событие, то

Рассмотрим следующие события: . Видим, что– т.е. событияинесовместны. Тогда

Но ,В результате, можем записать:, что и требовалось показать.

Мы будем в основном изучать такие непрерывные случайные величины, функции распределения которых непрерывны.

График функция распределения дискретной случайной величины представляет собой ступенчатую ломаную линию (см. рис.). Величина скачка в точках разрыва равна вероятности значения случайной величины в этой точке. Зная ряд распределения случайной величины, можно построить график её функции распределения:

.

Для непрерывной случайной величины более наглядной является не интегральная, а дифференциальная функция распределения или, так называемая, плотность распределения случайной величины.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«Южно-Уральский государственный университет

(национальный исследовательский университет)»

Факультет «Приборостроительный (КТУР)»

Кафедра «Информационно-измерительная техника»

Реферат на тему

«Что такое случайная величина?»

по дисциплине «Теория вероятностей и математическая статистика»

Проверил:

______________/ А.П. Лапин

Выполнил:

студент группы ПС-236

_______________/Загоскин Я.С./

Челябинск 2015

ВВЕДЕНИЕ

1. СЛУЧАЙНАЯ ВЕЛИЧИНА

ЗАКЛЮЧЕНИЕ

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

ВВЕДЕНИЕ

Теория вероятностей - относительно молодая, но уже ставшая классической, ветвь математики. Развитие ее как отдельной науки пришлось на середину XVII века, и началось с переписки двух известных во всем мире французских математиков: Блеза Паскаля и Пьера де Ферма. Однако задачами, относящимися к просчету вероятностей в азартных играх, ученые начали интересоваться значительно раньше. Так, например, итальянский математик Лука Пачоли еще в 1494 в своем труде «Сумма арифметики, геометрии, отношений и пропорций» («Summa de arithmetica, geometria, proportioni et proportionalitа»), рассмотрел одну из задач о вероятностях, но, к сожалению, привел ошибочное решение.

Сегодня методы теории вероятностей и математической статистики являются неотъемлемой частью практически любой дисциплины, как технической, так и гуманитарной направленности. Законы распределения случайных величин оказались применимыми не только к математике, физике, химии, и так далее, но и к дисциплинам, носящим отчасти прогностический характер, таким как социология, экономика, политология, etc.

В данной работе, познакомимся с основными понятиями, терминами и законами теории вероятностей и математической статистики, а так же с применением последних на практике.

1. СЛУЧАЙНАЯ ВЕЛИЧИНА

1.1 Определение случайной величины

Случайная величина - это фундаментальное понятие теории вероятностей и математической статистики.

Каждый автор по-своему формулирует понятие случайной величины. Е.С. Вентцель, например, определяет случайную величину, как величину, которая в результате опыта может принять то или иное значение, причем неизвестно заранее, какое именно .

Иначе говоря, случайная величина это величина, имеющая целый набор допустимых значений, но принимающая лишь одно, и какое именно, заранее точно сказать нельзя.

Формальное математическое определение случайной величины звучит следующим образом:

Пусть (Щ, F, P) - вероятностное пространство, тогда случайной величиной называют функцию X: Щ > R .

Случайную величину на практике обычно обозначают заглавными буквами, например: X, Y, Z, тогда, как возможные значения самой величины определяются строчными знаками: x, y, z.

1.2 Виды и примеры случайных величин

Различают два вида случайных величин: дискретные и непрерывные.

К дискретным относятся те случайные величины, множество значений которых конечно или фиксировано. Примером дискретной случайной величины, можно считать количество попаданий в цель при заранее определенном числе выстрелов.

Непрерывная случайная величина это такая величина, множество значений которой несчётно или бесконечно. В качестве примера для непрерывной случайной величины, можно взять количество кругов на воде, после попадания в нее камня, или расстояние, которое пролетит стрела, прежде чем упасть на землю.

Все случайные величины, ко всему прочему, имеют еще одну важную характеристику - ряд допустимых значений, который, в свою очередь, может как ограниченным, так и неограниченным. Отсюда, имеем, в зависимости от числа допустимых значений, ограниченные случайные величины, ряд допустимых значений конечен или фиксирован, и неограниченные, количество допустимых значений которых бесконечно.

Дискретные случайные величины могут иметь ограниченный и неограниченный ряд возможных значений, когда как непрерывные - только неограниченный.

На практике в теории вероятностей и математической статистике, как правило, имеют дело только с непрерывными случайными величинами.

2. ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ

2.1 Закон распределения дискретной случайной величины

Любое соотношение между допустимыми значениями случайной величины и вероятностями их наступления называют законом распределения дискретной случайной величины.

Существует два способа задания закона распределения:

· Аналитически, когда закон распределения задается в виде таблицы соответствия значений случайной величины и их вероятностью, именуемой рядом распределения:

Таблица 1 - ряд распределения случайной величины

Здесь, в первой строке располагаются возможные значения случайной величины, а во второй - их вероятности, при этом сумма всех вероятностей равна единице:

· Графически, когда таблица распределения случайно величины принимает многоугольника распределения:

Рисунок 1 - многоугольник распределения случайной величины

Где сумма всех ординат многоугольника является вероятностью всех допустимых значений случайной величины, следовательно, также равна единице.

Существует также биномиальный закон распределения дискретной случайной величины или, второе название - закон распределения Бернулли.

Определение: дискретная случайная величина о распределена по биномиальному закону, если вероятность того, что событие A наступит ровно m раз в серии из n испытаний по схеме Бернулли, равна:

Или в виде таблицы:

Таблица 2 - ряд биномиального распределения

Примером является выборочный контроль качества производственных изделий, при котором отбор изделий для пробы производится по схеме случайной повторной выборки, т.е. когда проверенные изделия возвращаются в исходную партию. Тогда количество нестандартных изделий среди отобранных есть случайная величина с биномиальным законом распределения вероятностей.

Дискретная случайная величина называется распределенной по закону Пуассона, если она имеет неограниченное счетное множество допустимых значений 0, 1, 2, …, m, … Тогда соответствующие вероятности определяются формулой (3):

M = 0, 1, 2,…; (3)

Примером явления, распределенного по закону Пуассона, является последовательность радиоактивного распада частиц.

2.2 Законы распределения непрерывной случайной величины

случайный величина теория вероятность

Рассмотренные выше правила распределения случайной величины являются справедливыми лишь по отношению к дискретным величинам, в силу того, что все перечисленные законы строятся исключительно из соображения, что количество возможных значений случайной величины конечно и строго фиксировано. Именно поэтому, например, распределить непрерывную случайную величину по закону Пуассона или Бернулли не получится, так как невозможно перечислить количество допустимых значений данной величины - оно бесконечно.

Для описания распределения непрерывных случайных величин существуют следующие законы:

Рассмотрим значения случайной величины Х такие, что Х<х. Вероятность события X<х зависит от x, т.е. является функцией x. Эта функция и называется интегральной функцией распределения и обозначается через F(x):

Равенство (4) читается:

Вероятность того, что случайное значение X находится левее значения х, определяется функцией распределения F(x).

Рисунок 2 - Графическое представление функции распределения с.в.

Стоит отметить, что в виде функции распределения, можно описывать как непрерывную, так и дискретную случайные величины - это универсальная характеристика.

Для непрерывных случайных величин на практике, наравне с функцией распределения F(x), также принято использовать другой закон распределения - плотность распределения вероятностей случайной величины:

Равенство (5) - дифференциальный закон распределения случайной величины, который выражает крутизну функции распределения F(x).

Рисунок 3 - Графическое представление дифференциального закона распределения с.в.

Заметим, что дифференциальный закон распределения случайной величины не является универсальным - он применим исключительно к непрерывным случайным величинам.

Одним из часто используемых на практике законов, является нормальный закон распределения - закон распределения Гаусса. Закон характеризует плотность вероятности нормально распределенной случайной величины X и имеет вид:

Где a и у параметры распределения имеют значения:

Кривая распределения (рисунок 4а), или кривая Гаусса, получается симметричной относительной точки x = a - точки максимума. При уменьшении значения у ордината точки максимума безгранично возрастает, кривая же при этом пропорционально расходится вдоль оси абсцисс, сохраняя площадь графика постоянной величиной, равной единице (рисунок 4б).

Рисунок 4 - Кривые распределения:

4а - кривая Гаусса,

4б - поведение кривой Гаусса при изменении параметра у;

На практике, нормальное распределение играет значимую роль во многих областях знаний, но особенное внимание ей уделяют в физике. Физическая величина подчиняется закону Гаусса, когда она подвергается влиянию большого числа случайных помех, что является крайне распространенной ситуацией, вследствие чего нормальное распределение чаще всего встречается в природе, и именно отсюда пошло ее название.

Непрерывная случайная величина называется равномерно распределенной на промежутке (a, b), если все ее возможные значения принадлежат этому промежутку и плотность распределения вероятностей постоянна - закон равномерного распределения непрерывной случайной величины, имеющий вид:

Для случайной величины Х, равномерно распределенной в интервале (a, b) (рисунок 5), вероятность попадания в любой интервал (x1, x2), лежащий внутри интервала (a, b), равна:

Рисунок 5 - График плотности равномерного распределения

В качестве примера равномерно распределенных величин, можно взять ошибки округления. Так, если все табличные значения некоторой функции округлены до одного и того же разряда, то выбирая наугад табличное значение, мы считаем, что ошибка округления выбранного числа - случайная величина, равномерно распределенная в интервале, где.

Непрерывная случайная величина X называется показательно распределенной, если плотность распределения ее вероятностей имеет вид:

В качестве примера, возьмем время Т безотказной работы компьютерной системы, где Т - случайная величина, имеющая показательное распределение с параметром л, физический смысл которого - среднее число отказов в единицу времени, не считая простоев системы для ремонта.

Рисунок 6 - График плотности показательного распределения

ЗАКЛЮЧЕНИЕ

Методы, средства и законы теории вероятностей и математической статистики на протяжении всех этапов формирования дисциплины, являлись актуальным, какими и остаются вплоть до наших дней. Главный принцип методов, позволивший затронуть столь огромное количество отраслей и сфер знания - универсальность. Их с легкостью можно применять в любой дисциплине, и при этом они не теряют своей силы, остаются справедливыми.

Но никогда еще теория вероятностей не была столь востребована, как сегодня. Связано это в первую очередь с невероятными темпами развития и роста вычислительной техники. С каждым годом она становится все сложнее, повышается быстродействие, количество производимых в секунду операций, и все это происходит не без участия математической статистики, которая, в свою помогает оптимизировать работу вычислительных систем и комплексов, повышает точность расчетов, осуществляет прогностическую функцию.

Данная работа частично помогает разобраться в азах дисциплины. Знакомит с фундаментальными понятиями, такими как дискретные и непрерывные случайные величины, поясняет разницу между последними. Знакомит с законами их распределения, с дальнейшим применением всех полученных знаний на практике.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Вентцель, Е.С. Теория вероятностей/ Е.С. Вентцель - М.:Наука, 1969г.

2. Смирнов, Н.В. Курс теории вероятностей и математической статистики для технических приложений./ Н.В. Смирнов, И.В. Дунин-Барковский - М.: «Наука», 1969г.

3. Пустыльник, Е.И. Статистические методы анализа и обработка наблюдений: учебное пособие/ Е.И. Пустыльник. - М.:«Наука», 1968г.

4. Джонсон, Н. Статистика и планирование в науке и технике./ Н. Джонсон, Ф. Лион - М.: «Мир», 1969г.

5.http://www.wikipedia.org/

Аннотация

Загоскин Я.С. «Что такое случайная величина?»

Челябинск: Юургу

Библиогр. Список - 5 наим.

Цель реферата: Познакомиться с базовыми терминами теории вероятностей и математической статистики.

Задачи реферата: Разобраться с понятием случайной величины.

Рассмотрено понятие случайной величины, определена классификация случайных величин, рассмотрены законы их распределения, примеры применения законов и методов на практике, а также проанализирована перспективность дисциплины.

Размещено на Allbest.ru

Подобные документы

    Вероятность попадания случайной величины Х в заданный интервал. Построение графика функции распределения случайной величины. Определение вероятности того, что наудачу взятое изделие отвечает стандарту. Закон распределения дискретной случайной величины.

    контрольная работа , добавлен 24.01.2013

    Непрерывная случайная величина и функция распределения. Математическое ожидание непрерывной случайной величины. Среднее квадратичное отклонение. Кривая распределения для непрерывной случайной величины. Понятие однофакторного дисперсионного анализа.

    контрольная работа , добавлен 03.01.2012

    Описание случайных ошибок методами теории вероятностей. Непрерывные случайные величины. Числовые характеристики случайных величин. Нормальный закон распределения. Понятие функции случайной величины. Центральная предельная теорема. Закон больших чисел.

    реферат , добавлен 19.08.2015

    Случайные величины. Функция и плотность распределения вероятностей дискретной случайной величины. Сингулярные случайные величины. Математическое ожидание случайной величины. Неравенство Чебышева. Моменты, кумулянты и характеристическая функция.

    реферат , добавлен 03.12.2007

    Задачи математической статистики. Распределение случайной величины на основе опытных данных. Эмпирическая функция распределения. Статистические оценки параметров распределения. Нормальный закон распределения случайной величины, проверка гипотезы.

    курсовая работа , добавлен 13.10.2009

    Математическое ожидание случайной величины. Свойства математического ожидания, дисперсия случайной величины, их суммы. Функция от случайных величин, ее математическое ожидание. Коэффициент корреляции, виды сходимости последовательности случайных величин.

    лекция , добавлен 17.12.2010

    Дискретные системы двух случайных величин. Композиция законов распределения, входящих в систему. Определение вероятности попадания случайной величины в интервал; числовые характеристики функции; математическое ожидание и дисперсия случайной величины.

    контрольная работа , добавлен 22.11.2013

    Плотность распределения непрерывной случайной величины. Характеристика особенностей равномерного и нормального распределения. Вероятность попадания случайной величины в интервал. Свойства функции распределения. Общее понятие о регрессионном анализе.

    контрольная работа , добавлен 26.04.2013

    Вычисление математического ожидания, дисперсии, функции распределения и среднеквадратического отклонения случайной величины. Закон распределения случайной величины. Классическое определение вероятности события. Нахождение плотности распределения.

    контрольная работа , добавлен 25.03.2015

    Функция распределения непрерывной случайной величины. Математическое ожидание непрерывной случайной величины, плотность распределения вероятностей системы. Ковариация. Коэффициент корреляции.

ЗАКОН РАСПРЕДЕЛЕНИЯ И ХАРАКТЕРИСТИКИ

СЛУЧАЙНЫХ ВЕЛИЧИН

Случайные величины, их классификация и способы описания.

Случайной называется величина, которая в результате опыта может принимать то или иное значение, но какое именно заранее не известно. Для случайной величины, таким образом, можно указать только значения, одно из которых она обязательно примет в результате опыта. Эти значения в дальнейшем будем называть возможными значениями случайной величины. Так как случайная величина количественно характеризует случайный результат опыта, она может рассматриваться как количественная характеристика случайного события.

Случайные величины обычно обозначаются заглавными буквами латинского алфавита, например, X..Y..Z, а их возможные значения- соответствующими малыми буквами.

Различают три типа случайных величин:

Дискретные; Непрерывные; Смешанные.

Дискретной называется такая случайная величина, число возможных значений которой образует счетное множество. В свою очередь, счетным называется множество, элементы которого можно пронумеровать. Слово «дискретный» происходит от латинского discretus , что означает «прерывистый, состоящий из отдельных частей» .

Пример 1. Дискретной случайной величиной является число бракованных деталей Х в партии из nтук. Действительно, возможными значениями этой случайной величины является ряд целых чисел от 0 до n.

Пример 2. Дискретной случайной величиной является число выстрелов до первого попадания в цель. Здесь, как и в примере 1, возможные значения можно пронумеровать, хотя в предельном случае возможное значение является бесконечно большим числом.

Непрерывной называется случайная величина, возможные значения которой непрерывно заполняют некоторый интервал числовой оси, называемый иногда интервалом существования этой случайной величины. Таким образом, на любом конечном интервале существования число возможных значений непрерывной случайной величины бесконечно велико.

Пример 3. Непрерывной случайной величиной является расход электроэнергии на предприятии за месяц.

Пример 4. Непрерывной случайной величиной является ошибка измерения высоты с помощью высотомера. Пусть из принципа работы высотомера известно, что ошибка лежит в пределах от 0 до 2 м. Поэтому интервалом существования данной случайной величины является интервал от 0 до 2 м.

Закон распределения случайных величин.

Случайная величина считается полностью заданной, если на числовой оси указаны ее возможные значения и установлен закон распределения.

Законом распределения случайной величины называется соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими вероятностями.

Про случайную величину говорят, что она распределена по данному закону, или подчинена данному закону распределения. В качестве законов распределения используются ряд вероятностей, функция распределения, плотность вероятности, характеристическая функция.

Закон распределения дает полное вероятное описание случайной величины. По закону распределения можно судить до опыта о том какие возможные значения случайной величины будут появляться чаще, а какие – реже.

Для дискретной случайной величины закон распределения может быть задан в виде таблицы, аналитически (в виде формулы) и графически.

Простейшей формой задания закона распределения дискретной случайной величины является таблица (матрица), в которой перечислены в порядке возрастания все возможные значения случайной величины и соответствующие их вероятности, т.е.

Такая таблица называется рядом распределения дискретной случайной величины. 1

События Х 1 , Х 2 ,..., Х n , состоящие в том, что в результате испытания случайная величина X примет соответственно значения х 1 , x 2 ,...х n являются несовместными и единственно возможными (ибо в таблице перечислены все возможные значения случайной величины), т.е. образуют полную группу. Следовательно, сумма их вероятностей равна 1. Таким образом, для любой дискретной случайной величины

(Эта единица как-то распределена между значениями случайной величины, отсюда и термин «распределение»).

Ряд распределения может быть изображен графически, если по оси абсцисс откладывать значения случайной величины, а по оси ординат - соответствующие их вероятности. Соединение полученных точек образует ломаную, называемую многоугольником или полигоном распределения вероятностей (рис. 1).

Пример В лотерее разыгрывается: автомобиль стоимостью 5000 ден. ед., 4 телевизора стоимостью 250 ден. ед., 5 видеомагнитофонов стоимостью 200 ден. ед. Всего продается 1000 билетов по 7 ден. ед. Составить закон распределения чистого выигрыша, полученного участником лотереи, купившим один билет.

Решение . Возможные значения случайной величины X - чистого выигрыша на один билет - равны 0-7 = -7 ден. ед. (если билет не выиграл), 200-7 = 193, 250-7 = 243, 5000-7 = 4993 ден. ед. (если на билет выпал выигрыш соответственно видеомагнитофона, телевизора или автомобиля). Учитывая, что из 1000 билетов число невыигравших составляет 990, а указанных выигрышей соответственно 5, 4 и 1, и используя классическое определение вероятности, получим.





Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта