Главная » Звезды » Скорость прохождения электрического тока. С какой скоростью двигается электрон

Скорость прохождения электрического тока. С какой скоростью двигается электрон

Представим себе очень длинную цепь тока, например телеграфную линию между двумя городами, отстоящими один от другого, скажем, на 1000 км. Тщательные опыты показывают, что действия тока во втором городе начнут проявляться, т. е. электроны в находящихся там проводниках начнут двигаться, примерно через секунды после того, как началось их движение по проводам в первом городе. Часто говорят не очень строго, но очень наглядно, что ток распространяется по проводам со скоростью 300 000 км/с.

Это, однако, не означает, что движение носителей заряда в проводнике происходит с этой огромной скоростью, так что электрон или ион, находившийся в нашем примере в первом городе, через секунды достигнет второго. Вовсе нет. Движение носителей в проводнике происходит почти всегда очень медленно, со скоростью несколько миллиметров в секунду, а часто и еще меньшей. Мы видим, следовательно, что нужно тщательно различать и не смешивать понятия «скорость тока» и «скорость движения носителей заряда».

Чтобы разобраться в том, что, собственно, мы имеем в виду, говоря о «скорости тока», вернемся снова к опыту с периодической зарядкой и разрядкой конденсатора, изображенному на рис. 70, но представим себе, что провода в правой части этого рисунка, через которые разряжается конденсатор, очень длинны, так что лампочка или прибор для обнаружения тока находятся, скажем, на расстоянии в тысячу километров от конденсатора. В тот момент, когда мы ставим ключ вправо, начинается движение электронов в участках проводов, прилегающих к конденсатору. Электроны начинают стекать с отрицательной обкладки ; одновременно, вследствие индукции, должен уменьшаться и положительный заряд на обкладке , т. е. электроны должны притекать к обкладке из соседних участков провода: заряд на обкладках и разность потенциалов между ними начинает уменьшаться.

Но перемещение электронов, происшедшее в участках проводов, непосредственно примыкающих к обкладкам конденсатора, приводит к появлению добавочных электронов (в участке около ) или к уменьшению их числа (в участке около ). Это перераспределение электронов изменяет электрическое поле в соседних участках цепи, и там также начинается движение электронов. Указанный процесс захватывает все новые и новые участки цепи, и когда, наконец, движение электронов начнется в волоске удаленной лампочки, оно проявится в накаливании волоска, (вспышке). Понятно, что совершенно аналогичные явления имеют место и при включении любого генератора тока.

Таким образом, начавшееся в одном месте движение зарядов через изменение электрического поля распространяется по всей цепи. Одни за другими все более удаленные носители заряда вовлекаются в это движение, и эта передача действия от одних зарядов к другим и происходит с огромной скоростью (около 300 000 км/с). Иначе можно сказать, что электрическое действие передается от одной точки цепи к другой с этой скоростью или что с этой скоростью распространяется вдоль проводов изменение электрического поля, возникшее в каком-нибудь месте цепи.

Таким образом, та скорость, которую мы для краткости называем «скоростью тока», - это скорость распространения вдоль проводника изменений электрического поля, а отнюдь не скорость движения в нем носителей заряда.

Поясним сказанное механической аналогией. Представим себе, что два города соединены нефтепроводом и что в одном из этих городов начал работать насос, повышающий в этом месте давление нефти. Это повышенное давление будет распространяться по жидкости в трубе с большой скоростью – около километра в секунду. Таким образом, через секунду начнут двигаться частицы на расстоянии, скажем, 1 км от насоса, через две секунды – на расстоянии 2 км, через минуту – на расстоянии 60 км и т. д. Спустя примерно четверть часа начнет вытекать из трубы нефть во втором городе. Но движение самих частиц нефти происходит значительно медленнее, и может пройти несколько суток, пока какие-нибудь определенные частицы нефти дойдут от первого города до второго. Возвращаясь к электрическому току, мы должны сказать, что «скорость тока» (скорость распространения электрического поля) аналогична скорости распространения давления по нефтепроводу, а «скорость носителей» аналогична скорости движения частиц самой нефти.

Источниками электрическою тока яв­ляются батареи, аккумуляторы, динамомашины, различные виды генерато­ров и т. д. Они производят элект­роэнергию за счет какого-нибудь дру­гого вида энергии, например, химиче­ской, механической, тепловой и пр. Следовательно, и вслучаях с источни­ками электрического тока закон сохра­нения энергии остается в силе.

Каждый источник тока имеет свойство при замыкании цепи создавать в проводниках электрическое поле, ко­торое с определенной силой действует на свободные электроны. Поэтому го­ворят, что каждый источник тока имеет определенную электродвижу­щую силу (ЭДС).

Источники электрического тока электронов не производят, но создан­ное ими электрическое поле приводит в движение свободные электроны, находящиеся всамих проводниках. В этом отношении любой источник тока можно сравнить с насосом, который приводит в движение воду в замкнутой системе труб (рис. 3.3б). Насос пере­дает энергию турбине так же, как бата­рейка передает энергию лампочке. Оче­видно, в любой неразветвленной систе­ме количество воды, протекающей в толстых и тонких трубах за единицу времени, одно и то же, только по тон­ким трубам частицы воды движутся с большей

скоростью. По аналогии можно сказать, что величина тока в неразветвленной электрической цепи везде одна та же, только в проводниках большего диаметра электроны движутся медленнее, чем в более тонких проводниках.

Скорость электрического тока

Электрическое поле распространяется по проводам со скоростью 300 000 ки­лометров в секунду. Эта скорость так велика, что за одну секунду поле может обойти земной шар около восьми раз!

Скорость направленного движения электронов в проводниках намного меньше и зависит от плотности тока.

По накаленной нити электрической лампочки электроны движутся со ско­ростью 1-2 сантиметра в секунду, в то время как в шнурах и кабелях эта ско­рость не превышает 2-3 миллиметров в секунду. Здесь может возникнуть воп­рос: почему же говорят, что скорость электрического тока огромна?

Для того, чтобы разобраться в этом, представим себе несколько десят­ков кубиков, плотно сложенных по прямой линии на гладкой поверхности. Если толкнем первый кубик, то толчок дойдет до последнего кубика почти мо­ментально, однако, скорость каждого кубика в отдельности не будет очень большой. Таким же образом при за­мыкании электрической цепи электри­ческое поле распространяется по про­воднику с огромной скоростью и по­чти одновременно приводит в движение как близкие, так и дальние электроны. Вот почему и принято считать, что электрический ток распространяется по проводникам со скоростью около 300 000 километров в секунду.

Направление электрического тока

Мы уже выяснили, что в металлах электрический ток обусловлен только одним видом носителей зарядов – электронами. Однако в электролитах электрический ток обусловлен как электронами, так и положительными ионами. Подобную картину наблю­даем

и в полупроводниках, где элект­рический ток обусловлен двумя видами заряженных частиц: электронами и дырками (дырки имеют свойства поло­жительно заряженных частиц, т. к. представляют собой места, в которых отсутствуют электроны). На рис. 3.4а условно показан полупроводник, по ко­торому не течет ток. Видно, что элект­роны и дырки движутся хаотично в различных направлениях вследствие теплового колебания. Если же полу­проводник соединен с источником то­ка, то возникает электрическое поле, и дырки начинают двигаться в направле­нии поля, а электроны навстречу по­лю (рис. 3.4б).

Еще в прошлом веке было принято под направлением электрического тока понимать направление движения положительно заряженных зарядов (тогда еще не знали, что ток в металлах обусловлен только электронами). По традиции это правило сохранилось и до сих пор. Поэтому согласно этому правилу, направление тока в металлах противоположно направлению движения электронов. Следовательно, ток во внешней цепи течет в направлении от положительного полюса к отрицательному.

Банальный если не риторический вопрос, не правда ли? Все мы в школе учили физику и хорошо помним, что скорость электрического тока в проводнике равна скорости распространения фронта электромагнитной волны, то есть равна скорости света. Но ведь на тех же уроках физики, нам показывали и кучу интересных опытов, где мы могли сами во всем убедиться. Вспомним хотя бы замечательные опыты с электрофорной машиной, эбонитом, постоянными магнитами и т.д. А вот опыты по измерению скорости электрического тока не показывали даже в университете, ссылаясь на отсутствие необходимого оборудования и сложность данных экспериментов. За последние несколько десятков лет прикладная наука сделала огромный рывок вперед и сейчас у многих любителей есть дома та аппаратура, о которой несколько десятков лет назад не мечтали даже научные лаборатории. А потому пришла пора начинать показывать и опыт по измерению скорости электрического тока, что бы вопрос был закрыт раз и навсегда в лучших традициях физики. То есть не на уровне математики гипотез и постулатов, а на уровне простых и понятных каждому экспериментов и опытов.
Суть эксперимента по измерению скорости электрического тока проста до безобразия. Возьмем провод, определенной длинны, в нашем случае 40 метров, подключим к нему генератор сигналов высокой частоты и двухлучевой осциллограф один луч соответственно к началу провода, а другой к его концу. Вот и все. Время, за которое электрический ток пройдет по проводу длиной 40 метров составляет около 160 наносекунд. Сдвиг именно на это время мы и должны увидеть на осциллографе между двумя лучами. Посмотрим теперь, что же мы видим на практике

То есть как мы увидели, никакой задержки в 160 наносекунд в нашем случае нет. И именно в нашем случае мы не смогли измерить скорость электрического тока, т.к. она оказалась на несколько порядков больше и не поддается измерению такими приборами. Может быть, у нас провода были сврхнанотехнологичные, или наш электрический ток просто не знал, что он обязан задержаться на 160 наносекунд в проводе? Но что есть, то есть.…
Большинство людей ассоциируют электричество с молнией с детства, и это приводит к заблуждению, что электроны и электричество движутся со скоростью света. Или почти. Хотя электромагнитная волна энергии действительно путешествует через проводник на скорости от 50 до 99 процентов световой, важно понимать, что сами электроны движутся очень медленно, не быстрее чем на пару сантиметров в секунду.
Точно так же, когда вы слышите звук с 300 метров, давление воздуха в ухе вызывается не смещением молекул от источника, а скорее волной сжатия, которая проносится рябью и затрагивает все молекулы воздуха между вами.
Электричество имеет нулевую массу или вес
Поскольку разглядеть электричество невооруженным глазом невозможно, легко предположить, что электричество - это просто энергия, которая течет из точки А в точку Б и не имеет массы или веса. В некотором смысле это верно: электрический ток - как река - не имеет массы или веса. Тем не менее электричество - это не просто форма невидимой энергии, это поток заряженных частиц - электронов - которые имеют массу и вес.
К сожалению, этот вес совершенно незначительный, а контур имеет круглую форму, поэтому вы никогда не соберете много электронов в одном месте. Наконец, поток заряженных частиц продвигается со скоростью нескольких сантиметров в секунду, но об этом позже.

Скорость распространения электрического тока.. Скорость движения носителей зарядов в электрическом поле.. От чего зависит скорость дрейфа носителей зарядов?.. Тепловое действие тока..

При изучении электрического тока часто возникают трудности понимания процессов, которые происходят на атомарном уровне и недоступны нашим органам чувств - электрический ток нельзя увидеть, услышать или пощупать. Это порождает целый ряд вопросов, в частности: почему проводники нагреваются? Какова скорость электронов в проводнике и от чего она зависит? Почему, когда мы нажимаем на выключатель, лампочка загорается практически мгновенно? Попробуем вместе разобраться и ответить на эти и другие интересующие вас вопросы.

Почему лампочка загорается практически мгновенно?

Прежде всего, нужно различать и не смешивать понятия «скорость распространения электрического тока » и «скорость движения носителей заряда » - это не одно и то же.

Когда мы говорим о скорости распространения электрического тока в проводнике, то имеется в виду скорость распространения по проводнику электрического поля, которая примерно равна скорости света (≈ 300 000 км/сек) . Однако это не означает, что движение носителей зарядов в проводнике происходит с этой огромной скоростью. Совсем нет.

Движение носителей заряда (в проводнике - это свободные электроны) происходит всегда довольно медленно , со скоростью направленного дрейфа от долей миллиметра до нескольких миллиметров в секунду , поскольку электрические заряды, сталкиваясь с атомами вещества, преодолевают большее или меньшее сопротивление своему движению в электрическом поле.

Но дело в том , что свободных электронов в проводнике очень, очень много (если каждый атом меди имеет один свободный электрон, то в проводнике столько подвижных электронов, сколько и атомов меди). Свободные электроны имеются везде в электрической цепи, включая, в том числе, и нить накаливания лампочки, которая является частью этой цепи.
При присоединении проводника к источнику электрической энергии в нем распространяется электрическое поле (со скоростью, близкой к скорости света), которое начинает действовать на ВСЕ свободные электроны практически одновременно.

Поэтому мы не наблюдаем никакого запаздывания между замыканием контактов выключателя и началом свечения лампочки, находящейся за десятки или сотни километров от электростанции. Включили напряжение, свободные электроны начали движение (во всей цепи одновременно), перенесли заряд, передали кинетическую энергию атомам вольфрама (нить накаливания), последняя нагрелась до свечения - вот и светит лампочка.

В случае переменного тока для получения требуемого тепла (рассеиваемой мощности нити накаливания) направление тока не имеет значения. Свободные электроны совершают колебания в соответствии с изменениями электрического поля и переносят заряд туда-обратно. При этом электроны сталкиваются с атомами кристаллической решетки вольфрама, передавая им свою энергию. Это приводит к нагреву нити накаливания лампочки и ее свечению.

От чего зависит скорость дрейфа носителей зарядов?

Скорость направленного дрейфа носителей зарядов в электрическом поле пропорциональна величине электрического тока : небольшой ток означает медленную скорость потока зарядов, большой ток означает бо льшую скорость.

На скорость носителей заряда влияет также сопротивление проводника . Тонкий проводник имеет большее сопротивление, проводник большого диаметра имеет меньшее сопротивление. Соответственно, в тонком проводнике скорость потока свободных электронов будет больше, чем в толстом проводнике (при одном и том же токе).

Имеет значение и материал проводника: в алюминиевом проводнике скорость потока электронов будет больше, чем в медном проводнике такого же сечения. Это означает, кроме прочего, что один и тот же ток будет нагревать алюминиевый проводник больше, чем медный.

Тепловое действие тока

Рассмотрим природу теплового действия тока более подробно .
При отсутствии электрического поля свободные электроны перемещаются в кристалле металла хаотически. Под действием электрического поля свободные электроны, кроме хаотического движения, приобретают упорядоченное движение в одном направлении, и в проводнике возникает электрический ток.

Свободные электроны сталкиваются с ионами кристаллической решетки, отдавая им при каждом столкновении кинетическую энергию, приобретенную при свободном пробеге под действием электрического поля. В результате упорядоченное движение электронов в металле можно рассматривать как равномерное движение с некоторой постоянной скоростью.
Поскольку кинетическая энергия электронов, приобретаемая под действием электрического поля, передается ионам кристаллической решетки при столкновении, то при прохождении постоянного тока проводник нагревается.

В случае переменного тока имеет место тот же эффект. С той лишь разницей, что электроны не перемещаются в одном направлении, а под действием переменного электрического поля они колеблются вперед-назад с частотой сети (50/60 Гц), оставаясь практически на месте.
При этом электроны также сталкиваются с атомами кристаллической решетки металла, передают свою кинетическую энергию и это приводит к нагреву кристаллической решетки. При достаточно больших значениях тока сильно разогретая решетка может даже потерять постоянные связи (металл начнет плавиться).

Чему равна скорость тока в проводнике? Банальный если не риторический вопрос, не правда ли? Все мы в школе учили физику и хорошо помним, что скорость электрического тока в проводнике равна скорости распространения фронта электромагнитной волны, то есть равна скорости света. Но ведь на тех же уроках физики, нам показывали и кучу интересных опытов, где мы могли сами во всем убедиться. Вспомним хотя бы замечательные опыты с электрофорной машиной, эбонитом, постоянными магнитами и т.д.

А вот опыты по измерению скорости электрического тока не показывали даже в университете, ссылаясь на отсутствие необходимого оборудования и сложность данных экспериментов. За последние несколько десятков лет прикладная наука сделала огромный рывок вперед и сейчас у многих любителей есть дома та аппаратура, о которой несколько десятков лет назад не мечтали даже научные лаборатории. А потому пришла пора начинать показывать и опыт по измерению скорости электрического тока, что бы вопрос был закрыт раз и навсегда в лучших традициях физики. То есть не на уровне математики гипотез и постулатов, а на уровне простых и понятных каждому экспериментов и опытов.

Суть эксперимента по измерению скорости электрического тока проста до безобразия. Возьмем провод, определенной длинны, в нашем случае 40 метров, подключим к нему генератор сигналов высокой частоты и двухлучевой осциллограф один луч соответственно к началу провода, а другой к его концу. Вот и все. Время, за которое электрический ток пройдет по проводу длиной 40 метров составляет около 160 наносекунд. Сдвиг именно на это время мы и должны увидеть на осциллографе между двумя лучами. Посмотрим теперь, что же мы видим на практике

То есть как мы увидели, никакой задержки в 160 наносекунд в нашем случае нет. И именно в нашем случае мы не смогли измерить скорость электрического тока, т.к. она оказалась на несколько порядков больше и не поддается измерению такими приборами. Может быть, у нас провода были сврхнанотехнологичные, или наш электрический ток просто не знал, что он обязан задержаться на 160 наносекунд в проводе? Но что есть, то есть.…

Почему ток в розетке и проводах не бежит со скоростью света? Или все-таки…

Любой человек, разбирающийся в физике, скажет, что скорость движения электрического тока равна скорости света и составляет 300 тысяч километров в секунду. С одной стороны он прав на 100%, но есть нюансы.

Со светом все просто и прозрачно: скорость полета фотона равна скорости распространения светового луча. С электронами сложнее. Электрический ток сильно отличается от видимого излучения.

Почему считается, что скорость полета фотонов в вакууме и скорость электронов в проводнике одинакова? Утверждение основано на фактических результатах. В 1888 году немецкий ученый Генрих Герц экспериментально установил, что электромагнитная волна распространяется в вакууме так же быстро как свет. Но можно ли говорить, что электроны в проводнике летят со скоростью света? Надо разобраться с природой электричества.

Что такое электрический ток?

Из школьного курса физики известно, что электричество – это поток электронов, упорядоченно перемещающихся в проводнике. Пока источника электричества нет, электроны движутся в проводнике хаотически, в разных направлениях. Если суммировать траектории всех заряженных частиц, получится ноль. Поэтому кусок металла не бьет током.

Если металлический предмет подсоединить к электрической цепи, все электроны в нем выстроятся в цепочку и потекут от одного полюса к другому. Насколько быстро произойдет упорядочение? Со скоростью света в вакууме. Но это не означает, что электроны полетели от одного полюса к другому также стремительно. Это заблуждение. Просто люди настолько привыкли к утверждению, что электричество распространяется так же быстро как свет, что не особо задумываются над деталями.

Популярные заблуждения о скорости света

Еще одним примером такого поверхностного восприятия можно назвать понятие о природе молнии. Многие ли задумываются, какие физические процессы происходят во время грозы? Какова, например, скорость молнии? Можно ли без приборов узнать, на какой высоте бушуют грозовые разряды? Разберемся со всем этим по порядку.

Кто-то может сказать, что молния бьет со скоростью света, и будет не прав. Настолько быстро распространяется вспышка, вызванная гигантским электрическим разрядом в атмосфере, но сама молния гораздо медленнее. Грозовой разряд – это не удар луча света наподобие лазера, хотя визуально похоже. Это сложная структура в насыщенной электричеством атмосфере.

Ступенчатый лидер или главный канал молнии формируется в несколько этапов. Каждая ступень в десятки метров образуется со скоростью около 100 км/сек вдоль разрядных нитей из ионизированных частиц. Направление меняется на каждом этапе, поэтому молния имеет вид извилистой линии. 100 километров в секунду – это быстро, но до скорости электромагнитной волны очень далеко. В три тысячи раз.

Что быстрее: молния или гром?

Этот детский вопрос имеет простой ответ – молния. Из того же школьного курса физики известно, что скорость звука в воздухе равна примерно 331 м/сек. Почти в миллион раз медленнее электромагнитной волны. Зная это, легко понять, как высчитать расстояние до молнии.

Свет вспышки доходит до нас в момент разряда, а звук летит дольше. Достаточно засечь промежуток времени между вспышкой и громом. Теперь просто считаем, насколько далеко от нас ударила молния, по простой формуле:

L =T × 331

Где T – это время от вспышки до грома, а L – это расстояние от нас до молнии в метрах.

Например, гром прогремел через 7.2 секунды после вспышки. 331 × 7.2 = 2383. Получается, что молния ударила на высоте 2 километра 383 метра.

Скорость электромагнитной волны – это не скорость тока

Теперь будем более внимательны к цифрам и терминам. На примере молнии убедились, что маленькое неверное допущение может привести к большим промахам. Точно известно, что скорость распространения электромагнитной волны равна 300 000 километров в секунду. Однако это не означает, что электроны в проводнике перемещаются с такой же скоростью.

Представим, что две команды соревнуются, кто быстрее доставит мяч с одного края поля на другой. Обязательное условие – каждый член команды сделает несколько шагов с мячом в руках. В одной команде пять человек, а в другой – один. Пятеро, выстроившись в цепочку, сыграют в пас, сделав каждый несколько шагов в направлении от старта к финишу. Одиночке придется бежать всю дистанцию. Очевидно, что победят пятеро, потому что мяч летит быстрее, чем человек бегает.

Так же и с электричеством. Электроны «бегают» медленно (собственная скорость элементарных частиц в направленном потоке исчисляется миллиметрами в секунду), но передают друг другу «мячик» заряда очень быстро. При отсутствии разности потенциалов на разноименных концах проводника все электроны движутся хаотично. Это тепловое движение, присутствующее в каждом веществе.

Если бы электроны двигались в проводах со скоростью света

Представим, что скорость электронов в проводнике все-таки близка к световой. В этом случае современная энергетика была бы невозможна в привычном для нас виде. Если бы электроны двигались по проводам, пролетая 300 000 километров в секунду, пришлось бы решать очень сложные технические задачи.





Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта