Главная » Отношения » Трехмерная и n-мерная система координат. Декартова система координат: основные понятия и примеры

Трехмерная и n-мерная система координат. Декартова система координат: основные понятия и примеры

Метод координат - это, конечно, очень хорошо, но в настоящих задачах C2 никаких координат и векторов нет. Поэтому их придется вводить. Да-да, вот так взять и ввести: указать начало отсчета, единичный отрезок и направление осей x, y и z.

Самое замечательное свойство этого метода заключается в том, что не имеет никакого значения, как именно вводить систему координат. Если все вычисления будут правильными, то и ответ будет правильным.

Координаты куба

Если в задаче C2 будет куб - считайте, что вам повезло. Это самый простой многогранник, все двугранные углы которого равны 90°.

Система координат также вводится очень просто:

  1. Начало координат - в точке A;
  2. Чаще всего ребро куба не указано, поэтому принимаем его за единичный отрезок;
  3. Ось x направляем по ребру AB, y - по ребру AD, а ось z - по ребру AA 1 .

Обратите внимание: ось z направляется вверх! После двумерной системы координат это несколько непривычно, но на самом деле очень логично.

Итак, теперь у каждой вершины куба есть координаты. Соберем их в таблицу - отдельно для нижней плоскости куба:

Несложно заметить, что точки верхней плоскости отличаются соответствующих точек нижней только координатой z. Например, B = (1; 0; 0), B 1 = (1; 0; 1). Главное - не запутаться!

Призма - это уже намного веселее. При правильном подходе достаточно знать координаты только нижнего основания - верхнее будет считаться автоматически.

В задачах C2 встречаются исключительно правильные трехгранные призмы (прямые призмы, в основании которых лежит правильный треугольник). Для них система координат вводится почти так же, как и для куба. Кстати, если кто не в курсе, куб - это тоже призма, только четырехгранная.

Итак, поехали! Вводим систему координат:

  1. Начало координат - в точке A;
  2. Сторону призмы принимаем за единичный отрезок, если иное не указано в условии задачи;
  3. Ось x направляем по ребру AB, z - по ребру AA 1 , а ось y расположим так, чтобы плоскость OXY совпадала с плоскостью основания ABC.

Здесь требуются некоторые пояснения. Дело в том, что ось y НЕ совпадает с ребром AC, как многие считают. А почему не совпадает? Подумайте сами: треугольник ABC - равносторонний, в нем все углы по 60°. А углы между осями координат должны быть по 90°, поэтому сверху картинка будет выглядеть так:

Надеюсь, теперь понятно, почему ось y не пойдет вдоль AC. Проведем в этом треугольнике высоту CH. Треугольник ACH - прямоугольный, причем AC = 1, поэтому AH = 1 · cos A = cos 60°; CH = 1 · sin A = sin 60°. Эти факты нужны для вычисления координат точки C.

Теперь взглянем на всю призму вместе с построенной системой координат:

Получаем следующие координаты точек:

Как видим, точки верхнего основания призмы снова отличаются от соответствующих точек нижнего лишь координатой z. Основная проблема - это точки C и C 1 . У них есть иррациональные координаты, которые надо просто запомнить. Ну, или понять, откуда они возникают.

Координаты шестигранной призмы

Шестигранная призма - это «клонированная» трехгранная. Можно понять, как это происходит, если взглянуть на нижнее основание - обозначим его ABCDEF. Проведем дополнительные построения: отрезки AD, BE и CF. Получилось шесть треугольников, каждый из которых (например, треугольник ABO) является основанием для трехгранной призмы.

Теперь введем собственно систему координат. Начало координат - точку O - поместим в центр симметрии шестиугольника ABCDEF. Ось x пойдет вдоль FC, а ось y - через середины отрезков AB и DE. Получим такую картинку:

Обратите внимание: начало координат НЕ совпадает с вершиной многогранника! На самом деле, при решении настоящих задач вы обнаружите, что это очень удобно, поскольку позволяет значительно уменьшить объем вычислений.

Осталось добавить ось z. По традиции, проводим ее перпендикулярно плоскости OXY и направляем вертикально вверх. Получим итоговую картинку:

Запишем теперь координаты точек. Предположим, что все ребра нашей правильной шестигранной призмы равны 1. Итак, координаты нижнего основания:

Координаты верхнего основания сдвинуты на единицу по оси z:

Пирамида - это вообще очень сурово. Мы разберем только самый простой случай - правильную четырехугольную пирамиду, все ребра которой равны единице. Однако в настоящих задачах C2 длины ребер могут отличаться, поэтому ниже приведена и общая схема вычисления координат.

Итак, правильная четырехугольная пирамида. Это такая же, как у Хеопса, только чуть поменьше. Обозначим ее SABCD, где S - вершина. Введем систему координат: начало в точке A, единичный отрезок AB = 1, ось x направим вдоль AB, ось y - вдоль AD, а ось z - вверх, перпендикулярно плоскости OXY. Для дальнейших вычислений нам потребуется высота SH - вот и построим ее. Получим следующую картинку:

Теперь найдем координаты точек. Для начала рассмотрим плоскость OXY. Здесь все просто: в основании лежит квадрат, его координаты известны. Проблемы возникают с точкой S. Поскольку SH - высота к плоскости OXY, точки S и H отличаются лишь координатой z. Собственно, длина отрезка SH - это и есть координата z для точки S, поскольку H = (0,5; 0,5; 0).

Заметим, что треугольники ABC и ASC равны по трем сторонам (AS = CS = AB = CB = 1, а сторона AC - общая). Следовательно, SH = BH. Но BH - половина диагонали квадрата ABCD, т.е. BH = AB · sin 45°. Получаем координаты всех точек:

Вот и все с координатами пирамиды. Но не с координатами вообще. Мы рассмотрели лишь самые распространенные многогранники, однако этих примеров достаточно, чтобы самостоятельно вычислить координаты любых других фигур. Поэтому можно приступать, собственно, к методам решения конкретных задач C2.

При введении системы координат на плоскости или в трехмерном пространстве появляется уникальная возможность описания геометрических фигур и их свойств при помощи уравнений и неравенств. Это имеет иное название – методы алгебры.

Данная статья поможет разобраться с заданием прямоугольной декартовой системой координат и с определением координат точек. Более наглядное и подробное изображение имеется на графических иллюстрациях.

Чтобы ввести систему координат на плоскости, необходимо провести на плоскости две перпендикулярные прямые. Выбираем положительное направление , обозначая стрелочкой. Необходимо выбрать масштаб. Точку пересечения прямых назовем буквой O . Она считается началом отсчета . Это и называется прямоугольной системой координат на плоскости.

Прямые с началом O , имеющие направление и масштаб, называют координатной прямой или координатной осью .

Прямоугольная система координат обозначается O x y . Координатными осями называют О х и О у, называемые соответственно ось абсцисс и ось ординат .

Изображение прямоугольной системы координат на плоскости.

Оси абсцисс и ординат имеют одинаковую единицу изменения и масштаб, что показано в виде штрихе в начале координатных осей. Стандартное направление О х слева направо, а O y – снизу вверх. Иногда используется альтернативный поворот под необходимым углом.

Прямоугольная система координат получила название декартовой в честь ее первооткрывателя Рене Декарта. Часто можно встретить название как прямоугольная декартовая система координат.

Трехмерное евклидовое пространство имеет аналогичную систему, только оно состоит не из двух, а из трех О х, О у, О z осей. Это три взаимно перпендикулярные прямые, где О z имеет название ось аппликат.

По направлению координатных осей делят на правую и левую прямоугольные системы координат трехмерного пространства.

Оси координат пересекаются в точке O , называемой началом. Каждая ось имеет положительное направление, которое указывается при помощи стрелок на осях. Если при повороте О х против часовой стрелки на 90 ° ее положительное направление совпадает с положительным О у, тогда это применимо для положительного направления О z . Такую систему считают правой. Иначе говоря, если сравнить направление Х с большим пальцем руки, то указательный отвечает за Y , а средний за Z .

Аналогично образуется левая система координат. Обе системы совместить невозможно, так как соответствующие оси не совпадут.

Для начала отложим точку М на координатной оси О х. Любое действительное число x M равняется единственной точке М, расположенной на данной прямой. Если точка расположена на координатной прямой на расстоянии 2 от начала отсчета по положительному направлению, то она равна 2 , если - 3 , то соответственное расстояние 3 . Ноль – это начало отсчета координатных прямых.

Иначе говоря, каждая точка М, расположенная на O x , равна действительному числу x M . Этим действительным числом и является ноль, если точка M расположена в начале координат, то есть на пересечении O x и О у. Число длины отрезка всегда положительно, если точка удалена в положительном направлении и наоборот.

Имеющееся число x M называют координатой точки М на заданной координатной прямой.

Возьмем точку как проекцию точки M x на О х, а как проекцию точки M y на О у. Значит, через точку М можно провести перпендикулярные осям О x и О у прямые, где послучим соответственные точки пересечения M x и M y .

Тогда точка M x на оси О х имеет соответствующее число x M , а M y на О у - y M . На координатных осях это выглядит так:

Каждая точка M на заданной плоскости в прямоугольной декартовой системе координат имеет одну соответствующую пару чисел (x M , y M) , называемую ее координатами . Абсцисса M – это x M , ордината M – это y M .

Обратное утверждение также считается верным: каждая упорядоченная пара (x M , y M) имеет соответствующую заданную в плоскости точку.

Определение точки М в трехмерном пространстве. Пусть имеются M x , M y , M z , являющиеся проекциями точки М на соответствующие оси О х, О у, О z . Тогда значения этих точек на осях О х, О у, О z примут значения x M , y M , z M . Изобразим это на координатных прямых.

Чтобы получить проекции точки M , необходимо добавить перпендикулярные прямые О х, О у, О z продолжить и изобразит в виде плоскостей, которые проходят через M . Таким образом, плоскости пересекутся в M x , M y , M z

Каждая точка трехмерного пространства имеет свои данные (x M , y M , z M) , которые имеют название координаты точки M , x M , y M , z M - это числа, называемые абсциссой, ординатой и аппликатой заданной точки M . Для данного суждения верно и обратное утверждение: каждая упорядоченная тройка действительных чисел (x M , y M , z M) в заданной прямоугольной системе координат имеет одну соответствующую точку M трехмерного пространства.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Двумерная система координат

Точка P имеет координаты (5,2).

Современная Декартова система координат в двух измерениях (также известная под названиемпрямоугольная система координат) задается двумя осями, расположенными под прямым углом друг к другу. Плоскость, в которой находятся оси, называют иногда xy-плоскости. Горизонтальная ось обозначается как x (ось абсцисс), вертикальная как y (ось ординат). В трехмерном пространстве до двух добавляется третья ось, перпендикулярная xy-плоскости - ось z. Все точки в системе декартовых координат, составляют так называемый Декартов пространство.

Точка пересечения, где оси встречаются, называется началом координат и обозначается как O. Соответственно, ось x может быть обозначена как Ox, а ось y - как Oy. Прямые, проведенные параллельно каждой оси на расстоянии единичного отрезка (единицы измерения длины) начиная с начала координат, формируют координатную сетку.

Точка в двумерной системе координат задается двумя числами, которые определяют расстояние от оси Oy (абсцисса или х-координата) и от оси Ох (ордината или y-координата) соответственно. Таким образом, координаты формируют упорядоченную пару (кортеж) чисел (x, y). В трехмерном пространстве добавляется еще z-координата (расстояние точки от ху-плоскости), и формируется упорядоченная тройка координат (x, y, z).

Выбор букв x, y, z происходит от общего правила наименования неизвестных величин второй половиной латинского алфавита. Буквы первой его половины используются для именования известных величин.

Стрелки на осях отражают то, что они простираются до бесконечности в этом направлении.

Пересечение двух осей создает четыре квадранта на координатной плоскости, которые обозначаются римскими цифрами I, II, III, и IV. Обычно порядок нумерации квадрантов - против часовой стрелки, начиная с правого верхнего (т.е. там, где абсциссы и ординату - положительные числа). Значение, которых приобретают абсциссы и ординаты в каждом квадранте, можно свести в следующую таблицу:

Квадрант x y
I > 0 > 0
II <0 > 0
III <0 <0
IV > 0 <0

Трехмерная и n-мерная система координат

На этом рисунке точка P имеет координаты (5,0,2), а точка Q - координаты (-5, -5,10)

Координаты в трехмерном пространстве формируют тройку (x, y, z).

Координаты x, y, z для трехмерной декартовой системы можно понимать как расстояния от точки до соответствующих плоскостей: yz, xz, и xy.

Трехмерная Декартова система координат является очень популярной, так как соответствует привычным представлениям о пространственных измерения - высоту, ширину и длину (то есть три измерения). Но в зависимости от области применения и особенностей матиматичного аппарата, смысл этих трех осей может быть совсем другим.

Системы координат высших размерностей также применяются (например, 4-мерная система для изображения пространства-времени в специальной теории относительности).

Система декартовых координат в абстрактном n-мерном пространстве является обобщением изложенных выше положений и имеет n осей (по каждой на измерение), что является взаимоперпендикулярных. Соответственно, положение точки в таком пространстве будет определяться кортежем из n координат, илиn-кой.

Уравнение прямой в (планиметрия) в каноническом

виде, параметрическом и общем виде.

Эти уравнения называются каноническими уравнениями прямой в пространстве.

могут быть равны нулю, это означает, что числитель соответствующей дроби тоже равен нулю.

Если в (1) ввести параметр t

x x 0
l
y y 0
m
z z 0
n

то уравнения прямой можно записать в виде

Построение Декартовой прямоугольной системы координат

на плоскости

Декартова прямоугольная система координатна плоскости образуется двумя взаимно перпендикулярными осями координат OX 1 и OX 2 , которые пересекаются в точке O , называемой началом координат (рис.1). На каждой оси выбрано положительное направление, указанное стрелками, и единица измерения отрезков на осях. Единицы измерения обычно одинаковы для всех осей (что не является обязательным). В правосторонней системе координат положительное направление осей выбирают так, чтобы при направлении оси OX 2 вверх, ось OX 1 смотрела направо. OX 1 -- ось абсцисс, OX 2 -- ось ординат. Четыре угла (I, II, III, IV), образованные осями координат OX 1 и OX 2 , называются координатными углами или квадрантами .

Точка B A на координатную ось OX 1 ;

Точка C - ортогональная проекция точки A на координатную ось OX 2 ;

Построение Декартовой прямоугольной системы координат в пространстве

Декартова прямоугольная система координат в пространстве образуется тремя взаимно перпендикулярными осями координат OX , OY и OZ . Оси координат пересекаются в точке O , которая называется началом координат, на каждой оси выбрано положительное направление, указанное стрелками, и единица измерения отрезков на осях. Единицы измерения обычно одинаковы для всех осей (что не является обязательным). OX -- ось абсцисс, OY -- ось ординат,OZ -- ось аппликат.

Если большой палец правой руки принять за направление X , указательный - за направление Y а средний - за направление Z , то образуется правая система координат. Аналогичными пальцами левой руки образуется левая система координат. Иначе говоря, положительное направление осей выбирают так, чтобы при повороте оси OX против часовой стрелки на 90° её положительное направление совпало с положительным направлением оси OY , если этот поворот наблюдать со стороны положительного направления оси OZ . Правую и левую системы координат невозможно совместить так, чтобы совпали соответствующие оси (рис.2). Точка F - ортогональная проекция точки A на координатную плоскость OXY; Точка E - ортогональная проекция точки A на координатную плоскость OYZ; Точка G - ортогональная проекция точки A на координатную плоскость OX Z ;

Макетное представление Декартовой прямоугольной системы координат в пространстве показано на рисунках 3, 4 и 5.

Определение координат точки в Декартовой прямоугольной системе координат

Главным вопросом любой системы координат является вопрос определения координат точки, находящейся в ее плоскости или пространстве.

Определение координат точки на плоскости Декартовой системы координат

Положение точки A на плоскости определяется двумя координатами - x и y (рис.5). Координата x равна длине отрезка OB , координата y -- длине отрезка OC в выбранных единицах измерения. Отрезки OB и OC определяются линиями, проведёнными из точки A параллельно осям OY и OX соответственно. Координата x называется абсциссой (лат. abscissa - отрезок), координата y -- ординатой (лат. ordinates - расположенный в порядке) точки A . Записывают так:

Если точка A лежит в координатном углу I, то она имеет положительные абсциссу и ординату. Если точка A лежит в координатном углу II, то - отрицательную абсциссу и положительную ординату. Если точка A лежит в координатном углу III, то она имеет отрицательные абсциссу и ординату. Если точка A лежит в координатном углу IV, то - положительную абсциссу и отрицательную ординату.

Так определяются координаты в Декартовой системе координат на плоскости.


M
Q
R
O
Рис.15
z
O
y
x

Точка О называется началом координат. Первая ось называется осью Ох , или осью абсцисс, вторая – осью Оу , или осью ординат, третья – осью Оz , или осью аппликат. Плоскость, проходящая через две оси из трех Ох , Оу , Оz , называется координатой плоскостью; координатных плоскостей 3. Они обозначаются так: yOz , zOx и xOy .

Пусть М – произвольная точка пространства. Обозначим через Р проекцию точки М на ось Ох параллельно плоскости yOz , а через х – координату точки Р на оси Ох . Через Q обозначим проекцию точки М на ось Оу параллельно плоскости zOx , а через у – координату точки Q на оси Оу . Через R обозначим проекцию точки М на ось Оz параллельно плоскости xOy , а через z – координату точки R на оси Оz (См. рис. 15).

Три числа x , y , z взятые в этом порядке, называются общими декартовыми (или аффинными) координатами точки М . Первая координата называется абсциссой точки М , вторая у – ординатой точки М , и третья z – аппликатой точки М . Точка М с координатами x , y , z обозначается М (x , y , z ).

Абсцисса точки М равна нулю тогда и только тогда, когда точка М лежит на плоскости yOz . Аналогично про ординату и аппликату.

Отсюда следуют, что точка М (x , y , z ) лежит на оси Ох тогда и только тогда, когда у =z =0, аналогично про оси Оу , Оz . Для начала координат х =у =z =0.

Точки , называются единичными точками осей координат. Точка называется единичной точкой системы координат .

Параллелепипед с вершиной в начале координат О и с ребрами, называется масштабным параллелепипедом. Отрезки, являются масштабными отрезками соответственно осей Ох, Оу, Оz. Векторы

называется масштабными векторами сответственно осей Ох , Оу , Оz .

При помощи общей декартовой системы координат устанавливается взаимно однозначное соответствие между множеством всех точек пространства и множеством всех упорядоченных троек действительных чисел. Здесь для построения точки М , имеющей координатами заданные числа х , у , z , поступают так: если то строят на осях Ох , Оу , Оz точки P , Q , R , имеющие на этих осях координаты, соответственно равные х , у , z и проводят через точки P , Q , R плоскости, соответственно параллельные координатным плоскостям уОz , zOx , xOy ; точка М – есть точка пересечения этих плоскостей.



Декартовой прямоугольной системой координат в пространстве называется упорядоченная тройка попарно перпендикулярных осей координат с общим началом координат О на каждой из них и с одним и тем же масштабным отрезком для каждой оси (см.рис.).

Декартовы прямоугольные координаты точки М определяются аналогично. Это ортогональные проекции точки М на оси Ох , Оу , Оz .

Отметим, что часто масштабные векторы осей Ох , Оу , Оz в декартовой прямоугольной системе координат обозначаются.





Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта