Главная » Отношения » Магнитная проницаемость соленоида. Вывод формул индукции поля соленоида, созданного переменным током

Магнитная проницаемость соленоида. Вывод формул индукции поля соленоида, созданного переменным током

Рис. 6.23. Магнитные силовые линии поля: 1 - соленоида; 2 - полосового магнита

Магнитное поле соленоида напоминает поле полосового магнита (рис. 6.23-2).

Если витки намотаны вплотную, то соленоид - это система круговых токов, имеющих одну ось.

Если считать соленоид достаточно длинным, то магнитное поле внутри соленоида однородно и направлено параллельно оси. Вне соленоида вдали от краев магнитное поле также должно иметь направление параллельное оси и на большом расстоянии от соленоида должно быть очень слабым. Поле убывает по закону

Подсчитаем поле внутри соленоида. Возьмем элемент соленоида длиной dh , находящийся на расстоянии h от точки наблюдения. Если катушка имеет n витков на единицу длины, то в выделенном элементе содержится ndh витков. Согласно формуле (6.11), этот элемент создает магнитное поле

Интегрируя по всей длине соленоида, получаем

Таким образом, поле в бесконечно длинном соленоиде дается выражением

На практике соленоиды бесконечно длинными не бывают. Для иллюстрации рассмотрим некоторые примеры.

Пример 1. Найти магнитное поле в середине соленоида конечной длины l (рис. 6.24). Сравнить с полем бесконечно длинного соленоида. При каких условиях разница составляет менее 0,5 %?

Рис. 6.24. Магнитное поле катушки конечной длины
В центре соленоида магнитное поле практически однородно и значительно превышает по модулю поле вне катушки

Решение. Магнитное поле в средней точке оси соленоида конечной длины l дается тем же интегралом (6.19), но с другими пределами интегрирования

Если длина соленоида много больше его диаметра (l >> 2R ), мы возвращаемся к формуле для поля в бесконечно длинном соленоиде (6.20). Относительная разница этих двух значений равна

По условию эта разница мала: , то есть мало отношение диаметра соленоида к его длине: 2R /l << 1. Поэтому можно воспользоваться формулой разложения квадратного корня

Подставляя численное значение d , находим, что разница будет менее половины процента при выполнении соотношения

Иными словами, соленоид может рассматриваться как бесконечно длинный, если его длина в двадцать или более раз превышает радиус.

Пример 2. Найти магнитное поле В е в крайней торцевой точке оси соленоида конечной длины l . Сравнить с результатом предыдущего примера.

Решение. Магнитное поле в торцевой точке оси соленоида конечной длины l дается тем же интегралом (6.19), но теперь пределы интегрирования будут выглядеть иначе

Отношение полей в средней и крайней точках оси соленоида равно

Это отношение всегда меньше единицы (то есть поле на торце меньше поля в середине соленоида). При l >> R имеем

Этот результат легко понять. Представим себе бесконечный соленоид, который мысленно рассекаем пополам в точке наблюдения. Можно считать, что поле в этой точке создается двумя одинаковыми «полубесконечными» соленоидами, расположенными по разные стороны от нее. Ясно, что при удалении одного из них точка наблюдения становится торцом оставшегося «полубесконечного» соленоида, а магнитная индукция в ней уменьшиться именно в два раза.

Это - так называемый краевой эффект. Пример демонстрирует, что недостаточно выполнения соотношения l >> R , чтобы пользоваться формулами для бесконечно длинного соленоида; надо еще, чтобы точка наблюдения находилась далеко от его концов.

На рис. 6.25 представлен опыт по исследованию распределения силовых линий магнитного поля вокруг соленоида. Поле соленоида, ось которого лежит в плоскости пластинки, сосредоточено в основном внутри соленоида. Силовые линии внутри имеют вид параллельных прямых вдоль оси катушки, а поле снаружи практически отсутствует.

Рис. 6.25. Визуализация силовых линий магнитного поля

село Полтавское Аннотация: в статье представлен вывод формул индукции поля соленоида, созданного переменным током. Эту формулу можно использовать для углубленного изучения учащимися темы «Магнитное поле» и при решении задач. Ключевые слова: индукция, соленоид, магнитный поток, частота, индуктивность, индуцированное напряжение, мощность переменного тока. При переменном токе соленоид создаёт переменное магнитное поле. При этом, как известно, индуктивность соленоида определяется формулой [ 1, с.101 ] : L = , где (1) где U – индуцированное в соленоиде напряжение, n – частота переменного тока, I – сила переменного тока. С другой стороны индуктивность соленоида определяется формулой [ 2, с.253 ] : L = , (2) где Ф – магнитный поток соленоида. Приравнивая выражения (1) и (2), получим: Ф = . (3) При этом полный магнитный поток соленоида определяется и другой формулой [ 2, с.242 ] : Ф =В × S × N , (4) где В – индукция магнитного поля, N – число витков соленоида, S – площадь поперечного сечения магнитного поля. Приравняв выражения (3) и (4), получим В = . (5) Таким образом, индукция поля соленоида, созданного переменным током, прямо пропорциональна индуцированному в соленоиде напряжению. Как известно, магнитную индукцию поля, созданного постоянным током, текущим по виткам бесконечно длинного соленоида, внутри этого соленоида на его оси определяют по формуле [ 2, с.232 ] : В = (в вакууме), (6) где n = NI – число ампер-витков соленоида, l длина соленоида, µ о магнитная постоянная. Единица магнитной индукции (тесла) может быть установлена по формуле (6): [ В ] = × = , (7) С другой стороны единица магнитной индукции (тесла) может быть установлена по формуле (5): [ В ] = , (8) Перемножив выражения (7) и (8), получим: [ В ] 2 = × = = , (9) Тогда заменив единицы измерения в выражении (9) физическими величинами, получим формулу для индукции поля соленоида, созданного переменным током: В 2 = , отсюда В = , (10) где V - объём соленоида, Р – мощность переменного тока. Таким образом, индукция магнитного поля соленоида увеличивается при увеличении мощности переменного тока и уменьшается при увеличении объёма соленоида. Задача 1. Магнитная индукция поля внутри соленоида, состоящего из 2000 витков диаметра 2,8см, подключённого к источнику переменного тока с частотой 50Гц, равна 0,72мТл. Каково индуцированное в соленоиде напряжение?
Дано: СИ: Решение:
N = 2000 витков d = 2,8 см В = 0,72 мТл n = 50 Гц = 2,8 × 10 -2 м =0,72 × 10 -3 Тл Индукция поля соленоида определяется формулой: В = , (1) Учитывая, что S = , (2) и, используя выражения (1) и (2), найдём . (3)
U – ?
Подставляя исходные данные в выражение (3), получим: = 0,278 В.
Ответ: U = 0,278 В.
Задача 2. Индуцированное в соленоиде напряжение 0,2В. Магнитная индукция поля внутри соленоида, созданного переменным током с частотой 50 Гц, равна 0,52 мТл и диаметр магнитного поля равен 2,8см. Сколько витков содержит соленоид?
Дано: СИ: Решение:
U = 0,2 В d = 2,8 см В = 0,52 мТл n = 50 Гц = 2,8 × 10 -2 м =0,52 × 10 -3 Тл Индукция поля соленоида выражается формулой: В = , (1) Учитывая, что S = , (2) и, используя выражения (1) и (2), получим . (3)
N – ?
Подставляя исходные данные в выражение (3), получим: витков
Ответ: N = 2000 витков.
Задача 3. Магнитная индукция поля внутри соленоида с числом витков 400 и объёмом 6,15 × 10 -5 м 3 равна 0,72 мТл. Частота переменного тока 50Гц. Какова мощность переменного тока?
Дано: СИ: Решение:
B = 0,72 мТл n = 50 Гц µ о =1,256 × 10 -6 V = 6,15 × 10 -5 м 3 N = 400 витков =0,72 × 10 -3 Тл Индукция поля соленоида определяется по формуле (10): В = , отсюда Р = . Подставляя исходные данные, получим:
P – ?
» 3,2 мкВт. Ответ: Р » 3,2 мкВт.
Литература
1. Мякишев Г.Я., Буховцев Б.Б. Физика. Учебник для общеобразовательных учреждений. М.: Просвещение, 2007. 336 с. 2. Мустафаев Р.А., Кривцов В.Г. Физика. М.: Высшая школа, 1989. 496 с.

Соленоид – катушка, длина которой значительно превышает толщину (проводник, навитый на цилиндр). Опыт и расчет показывает, что чем длиннее соленоид, тем меньше индукция МП снаружи него. Для бесконечно длинного соленоида МП снаружи отсутствует вообще.

1 этап . Из соображений симметрии ясно, что линии вектора направлены вдоль его оси, причем составляет с направлением тока в соленоиде правовинтовую систему.

2 этап. Выбираем контур L в виде прямоугольника 1-2-3-4-1, как показано на рис. 6 (одна из сторон которого параллельна оси соленоида и располагается внутри него).

Рис. 6

Рассчитаем циркуляцию по данному контуру:

где - длина стороны 1-2 контура. На сторонах 2-3, 3-4 и 4-1 интеграл обращается в ноль, т.к. внутри соленоида , а за его пределами .

3 этап. Рассчитаем суму токов, охватываемых контуром , где – число витков на стороне контура 1-2. Выбираем знак «+», т.к. направление тока и обхода контура связано правилом правого винта.

4 этап. Использую т о циркуляции, находим модуль вектора : , откуда

, (1.20)

где – число витков на единицу длины соленоида.

Магнитное поле тороида Тороид – кольцевая катушка с витками, намотанными на сердечник, имеющий форму тора.

здесь N - число витков в тороидальной катушке, – радиус осевой линии тороида (т.е. окружности, проходящей через центры витков).

Вне тороида МП отсутствует.

§ 5. Сила Ампера

Каждый носитель тока испытывает действие магнитной силы. Действие этой силы передается проводнику, по которому заряды движутся. В результате магнитное поле (МП) действует с определенной силой на сам проводник с током. Силы, действующие на токи в МП, называют силами Ампера.

Закон Ампера определяет силу , с которой магнитное поле действует на элемент проводника с током :

Интегрируя это выражение по элементам тока, можно найти силу Ампера, действующую на тот или иной участок проводника.

Направление силы удобно определять по правилу левой руки (рис.).

Рис. Правило левой руки.

Сила взаимодействия параллельных токов. 2 параллельных бесконечно длинных проводника с токами и находятся на расстоянии . На единицу длины проводника с током действует сила .

Нетрудно убедиться, что токи, одинаково направленные, притягиваются, а противоположно направленные –отталкиваются. Здесь речь идет только о магнитной силе! Нельзя забывать, что кроме магнитной имеется еще и электрическая сила, обусловленная избыточными зарядами на поверхности проводников. Поэтому если говорить о полной силе взаимодействия проводников, то она может быть как отталкивающей, так и притягивающей в зависимости от соотношения магнитной и электрической составляющих.



§ 6. Момент сил, действующих на контур с током

Соленоид представляет собой провод, навитый на круглый цилиндрический каркас. Линии В поля соленоида выглядят примерно так, как показано на рис. 50.1. Внутри соленоида направление этих линий образует с направлением тока в витках правовинтовую систему.

У реального соленоида имеется составляющая тока вдоль оси. Кроме того, линейная плотность тока (равная отношению силы тока к элементу длины соленоида ) изменяется периодически при перемещении вдоль соленоида. Среднее значение этой плотности равно

где - число витков соленоида, приходящееся на единицу его длины, I - сила тока в соленоиде.

В учении об электромагнетизме большую роль играет воображаемый бесконечно длинный соленоид, у которого отсутствует осевая составляющая тока и, кроме того, линейная плотность тока постоянна по всей длине. Причина этого заключается в том, что поле такого соленоида однородно и ограничено объемом соленоида (аналогично электрическое поле бесконечного плоского конденсатора однородно и ограничено объемом конденсатора).

В соответствии со сказанным представим соленоид в виде бесконечного тонкостенного цилиндра, обтекаемого током постоянной линейной плотности

Разобьем цилиндр на одинаковые круговые токи - «витки».

Из рис. 50.2 видно, что каждая пара витков, расположенных симметрично относительно некоторой плоскости, перпендикулярной к оси соленоида, создает в любой точке этой плоскости магнитную индукцию, параллельную оси. Следовательно, и результирующее поле в любой точке внутри и вне бесконечного соленоида может иметь лишь направление, параллельное оси.

Из рис. 50.1 вытекает, что направления поля внутри и вне конечного соленоида противоположны. При увеличении длины соленоида направления полей не изменяются и в пределе при остаются противоположными. Для бесконечного соленоида, как и для конечного, направление поля внутри соленоида образует с направлением обтекания цилиндра током правовинтовую систему.

Из параллельности вектора В оси вытекает, что поле как внутри, так и вне бесконечного соленоида должно быть однородным. Чтобы доказать это, возьмем внутри соленоида воображаемый прямоугольный контур 1-2-3-4 (рис. 50.3; участок идет по оси соленоида). Обойдя контур по часовой стрелке, получим для циркуляции вектора В значение Контур не охватывает токов, поэтому циркуляция должна быть равна нулю (см. (49.7)).

Отсюда следует, что Располагая участок контура 2-3 на любом расстоянии от оси, мы каждый раз будем получать, что магнитная индукция на этом расстоянии равна индукции на оси соленоида. Таким образом, однородность поля внутри соленоида доказана.

Теперь обратимся к контуру 1-2-3-4. Мы изобразили векторы штриховой линией, поскольку, как выяснится в дальнейшем, поле вне бесконечного соленоида равно нулю. Пока же мы знаем лишь, что возможное направление поля вне соленоида противоположно направлению поля внутри соленоида. Контур не охватывает токов; поэтому циркуляция вектора В по этому контуру, равная а, должна быть равна нулю.

Отсюда вытекает, что . Расстояния от оси соленоида до участков 1-4 и 2-3 были взяты произвольно. Следовательно, значение В на любом расстоянии от оси будет вне соленоида одно и то же. Таким образом, оказывается доказанной и однородность поля вне соленоида.

Циркуляция по контуру, изображенному на рис. 50.4, равна (для обхода по часовой стрелке). Этот контур охватывает положительный ток величины . В соответствии с (49.7) должно выполняться равенство

или после сокращения на а и замены на (см. )

Из этого равенства следует, что поле как внутри, так и снаружи бесконечного соленоида является конечным.

Возьмем плоскость, перпендикулярную к оси соленоида (рис. 50.5). Вследствие замкнутости линий В магнитные потоки, через внутреннюю часть 5 этой плоскости и через внешнюю часть S должны быть одинаковыми.

Поскольку поля однородны и перпендикулярны к плоскости, каждый из потоков равен произведению соответствующего значения магнитной индукции и площади, пронизываемой потоком. Таким образом, получается соотношение

Левая часть этого равенства конечна, множитель S в правой части бесконечно большой. Отсюда следует, что

Итак, мы доказали, что вне бесконечно длинного соленоида магнитная индукция равна нулю. Внутри соленоида поле однородно.

Положив в (50.3) , придем к формуле для магнитной индукции внутри соленоида:

Произведение называется числом ампер-витков на метр. При витков на метр и силе тока в 1 А магнитная индукция внутри соленоида составляет .

В магнитную индукцию на оси соленоида симметрично расположенные витки вносят одинаковый вклад (см. формулу (47.4)). Поэтому у конца полубесконечного соленоида на его оси магнитная индукция равна половине значения (50.4): - число витков на единицу его длины). В этом случае

Контур, проходящий вне тороида, токов не охватывает, поэтому для него Таким образом, вне тороида магнитная индукция равна нулю.

Для тороида, радиус которого R значительно превосходит радиус витка, отношение для всех точек внутри тороида мало отличается от единицы и вместо (50.6) получается формула, совпадающая с формулой (50.4) для бесконечно длинного соленоида. В этом случае поле можно считать однородным в каждом из сечений тороида. В разных сечениях поле имеет различное направление, поэтому говорить об однородности поля в пределах его тороида можно только условно, имея в виду одинаковость модуля В.

У реального тороида имеется составляющая тока вдоль оси. Эта составляющая создает в дополнение к полю (50.6) поле, аналогичное полю кругового тока.

Для создания магнитного поля в технике используется соленоид – цилиндрическая катушка, состоящая из большого числа витков, равномерно намотанных на общий сердечник (рис. 4.5).

Рассмотрим соленоид длиной L , имеющий N витков, по которому течет ток I . Длину соленоида считаем во много раз большей диаметров его витков. Магнитное поле такого соленоида целиком сосредоточено внутри него и однородно. Снаружи соленоида поле мало и его практически можно считать равным нулю.

Величину индукции магнитного поля соленоида можно найти, складывая магнитные индукции полей, создаваемых каждым витком соленоида. Так как витки соленоида намотаны вплотную друг к другу, на длине dx сосредоточено витков. Суммарный ток, протекающий по кольцу, толщиной dx , равен . В точке, находящейся на оси соленоида каждое такое кольцо создает магнитное поле, согласно (4.7), равное:

.

Суммарное поле:

(4.9)

При интегрировании соленоид считаем бесконечным. Как видно из (4.9) магнитное поле соленоида зависит от плотности намотки – числа витков на единицу длины соленоида .

Магнитный поток

Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина, равная:

= В n dS = Bcos α × dS , (4.10)

где В n – проекция вектора В на направление, перпендикулярное к площадке dS ; α – угол между вектором нормали n и вектором В .

Положительное направление нормали связано правилом правого винта с током, текущим по контуру, ограничивающему площадку dS . Магнитный поток Ф через произвольную поверхность S можно представить в виде:

Действие магнитного поля на заряды



На электрический заряд q , движущийся в магнитном поле с индукцией В со скоростью V , действует сила Лоренца:

. (4.12)

Абсолютная величина магнитной силы:

F = qvB Sin α ,

где α – угол между векторами V и В .

По правилу векторного произведения магнитная сила F перпендикулярна плоскости, в которой лежат вектора V и B .

Если q >0, магнитная сила F совпадает с направлением векторного произведения [V,B ], если q <0, то противоположно.

Для положительного заряда, движущегося в магнитном поле, как показано на рисунке 4.6, сила F направлена вдоль отрицательного направления оси Z . Продольная компонента скорости V ll под действием магнитного поля изменяться не будет и движение заряженной частицы вдоль оси Х – равномерное. Результирующее движение частицы – по винтовой линии (рис.4.6). Спираль может быть как правой, так и левой в зависимости от знака заряда q .

Радиус спирали R найдем из условия, что при равномерном движении частицы по окружности сила F является центростремительной силой:

,

где m – масса заряженной частицы. Отсюда:

.

Время, за которое частица совершит полный оборот (период):

. (4.13)

Из формулы (4.13) следует, что период обращения частицы не зависит от ее скорости. Однако надо помнить, что этот вывод справедлив только при условии V <<c , где: с – скорость света.

Если движение частицы происходит как в магнитном поле с индукцией B , так и в электрическом поле с напряженностью Е , то на нее действует обобщенная сила Лоренца:

. (4.14)

Электромагнитная индукция

Если поток магнитной индукции сквозь контур изменяется со временем, то, согласно закону электромагнитной индукции Фарадея, в контуре возникает ЭДС индукции:

E = – , (4.15)

Знак (–) означает: индукционный ток всегда имеет такое направление, что создаваемое им магнитное поле стремиться скомпенсировать то изменение магнитного потока, которым вызван данный индукционный ток (правило Ленца).

Ток в замкнутом контуре создает в окружающем пространстве магнитное поле, индукция которого пропорциональна току: В ~ I. Поэтому сцепленный с контуром магнитный поток пропорционален силе тока в контуре I:

Ф = LI ,

гдеL коэффициент пропорциональности называют коэффициентом самоиндукции или индуктивностью контура.

Если по контуру протекает изменяющийся со временем ток I(t) , то изменяется магнитный поток, пронизывающий контур. В контуре возникает ЭДС самоиндукции:

Индуктивность контура L в общем случае зависит от геометрии контура и магнитной проницаемости среды µ. Если эти величины не изменяются, то L = const . Т.е., если контур жесткий и поблизости нет ферромагнетиков, то L = const .

Рассмотрим два контура 1 и 2, расположенных на некотором расстоянии друг от друга (рис. 4.7). Если по контуру 1 пропустить ток I 1 , то он создает поток магнитной индукции через контур 2:

Ф 21 = L 21 I 1 . (4.17)

Коэффициент пропорциональности L 21 называют коэффициентом взаимной индукции контуров (взаимная индуктивность контуров). Он зависит от формы и взаимного расположения контуров 1 и 2, а также от магнитных свойств окружающей среды.

При изменении силы тока в первом контуре магнитный поток сквозь второй контур изменяется; следовательно, в нем наводится ЭДС взаимной индукции:

. (4.18)

Формула справедлива в отсутствие ферромагнетиков.

Если поменять местами контуры 1 и 2 и повторить все предыдущие рассуждения, то получим:

. (4.19)

Коэффициенты взаимной индукции равны.





Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта