Главная » Звезды » Y ax2 bx c график. ГИА. Квадратичная функция

Y ax2 bx c график. ГИА. Квадратичная функция

Презентация и урок на тему:
"График функции $y=ax^2+bx+c$. Свойства"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Пособие к учебнику Дорофеева Г.В. Пособие к учебнику Никольского С.М.

Ребята, на последних уроках мы строили большое количество графиков, в том числе много парабол. Сегодня мы обобщим полученные знания и научимся строить графики этой функции в самом общем виде.
Давайте рассмотрим квадратный трехчлен $a*x^2+b*x+c$. $а, b, c$ называются коэффициентами. Они могут быть любыми числами, но $а≠0$. $a*x^2$ называется старшим членом, $а$ – старшим коэффициентом. Стоит заметить, что коэффициенты $b$ и $c$ могут быть равными нулю, то есть трехчлен будет состоять из двух членов, а третий равен нулю.

Давайте рассмотрим функцию $y=a*x^2+b*x+c$. Это функция называется "квадратичной", потому что старшая степень вторая, то есть квадрат. Коэффициенты такие же, как определено выше.

На прошлом уроке в последнем примере, мы разобрали построение графика схожей функции.
Давайте докажем, что любую такую квадратичную функцию можно свести к виду: $y=a(x+l)^2+m$.

График такой функции строится с использованием дополнительной системы координат. В большой математике, числа встречаются довольно редко. Практически любую задачу требуется доказать в самом общем случае. Сегодня мы разберем одно из таких доказательств. Ребята, вы сможете, увидеть всю силу математического аппарата, но так же и его сложность.

Выделим полный квадрат из квадратного трехчлена:
$a*x^2+b*x+c=(a*x^2+b*x)+c=a(x^2+\frac{b}{a}*x)+c=$ $=a(x^2+2\frac{b}{2a}*x+\frac{b^2}{4a})-\frac{b^2}{4a}+c=a(x+\frac{b}{2a})^2+\frac{4ac-b^2}{4a}$.
Мы получили, то что хотели.
Любую квадратичную функцию можно представить в виде:
$y=a(x+l)^2+m$, где $l=\frac{b}{2a}$, $m=\frac{4ac-b^2}{4a}$.

Для построения графика $y=a(x+l)^2+m$ нужно построить график функции $y=ax^2$. Причем вершина параболы будет находиться в точке с координатами $(-l;m)$.
Итак, наша функция $y=a*x^2+b*x+c$ - парабола.
Осью параболы будет являться прямая $x=-\frac{b}{2a}$, причем координаты вершины параболы по оси абсцисс, как мы можем заметить, вычисляется формулой: $x_{в}=-\frac{b}{2a}$.
Для вычисления координаты вершины параболы по оси ординат, вы можете:

  • воспользоваться формулой: $y_{в}=\frac{4ac-b^2}{4a}$,
  • напрямую подставить в исходную функцию координату вершины по $х$: $y_{в}=ax_{в}^2+b*x_{в}+c$.
Как вычислять ординату вершины? Опять же выбор за вами, но обычно вторым способом посчитать будет проще.
Если требуется описать какие-то свойства или ответить на какие-то определенные вопросы, не всегда нужно строить график функции. Основные вопросы, на которые можно ответить без построения, рассмотрим в следующем примере.

Пример 1.
Без построения графика функции $y=4x^2-6x-3$ ответьте на следующие вопросы:


Решение.
а) Осью параболы служит прямая $x=-\frac{b}{2a}=-\frac{-6}{2*4}=\frac{6}{8}=\frac{3}{4}$.
б) Абсциссу вершины мы нашли выше $x_{в}=\frac{3}{4}$.
Ординату вершины найдем непосредственной подстановкой в исходную функцию:
$y_{в}=4*(\frac{3}{4})^2-6*\frac{3}{4}-3=\frac{9}{4}-\frac{18}{4}-\frac{12}{4}=-\frac{21}{4}$.
в) График, требуемой функции, получится параллельным переносом графика $y=4x^2$. Его ветви смотрят вверх, а значит и ветви параболы исходной функции также будет смотреть вверх.
Вообще, если коэффициент $а>0$, то ветви смотрят вверх, если коэффициент $a
Пример 2.
Построить график функции: $y=2x^2+4x-6$.

Решение.
Найдем координаты вершины параболы:
$x_{в}=-\frac{b}{2a}=-\frac{4}{4}=-1$.
$y_{в}=2*(-1)^2+4(-1)-6=2-4-6=-8$.
Отметим координату вершины на оси координат. В этой точке, как будто в новой системе координат построим параболу $y=2x^2$.

Существует множество способов, упрощающих построение графиков параболы.

  • Мы можем найти две симметричные точки, вычислить значение функции в этих точках, отметить их на координатной плоскости и соединить их с вершиной кривой, описывающей параболу.
  • Мы можем построить ветвь параболы правее или левее вершины и потом ее отразить.
  • Мы можем строить по точкам.

Пример 3.
Найти наибольшее и наименьшее значение функции: $y=-x^2+6x+4$ на отрезке $[-1;6]$.

Решение.
Построим график данной функции, выделим требуемый промежуток и найдем самую нижнюю и самую высокую точки нашего графика.
Найдем координаты вершины параболы:
$x_{в}=-\frac{b}{2a}=-\frac{6}{-2}=3$.
$y_{в}=-1*(3)^2+6*3+4=-9+18+4=13$.
В точке с координатами $(3;13)$ построим параболу $y=-x^2$. Выделим требуемый промежуток. Самая нижняя точка имеет координату -3, самая высокая точка - координату 13.
$y_{наим}=-3$; $y_{наиб}=13$.

Задачи для самостоятельного решения

1. Без построения графика функции $y=-3x^2+12x-4$ ответьте на следующие вопросы:
а) Укажите прямую, служащую осью параболы.
б) Найдите координаты вершины.
в) Куда смотрит парабола (вверх или вниз)?
2. Построить график функции: $y=2x^2-6x+2$.
3. Построить график функции: $y=-x^2+8x-4$.
4. Найти наибольшее и наименьшее значение функции: $y=x^2+4x-3$ на отрезке $[-5;2]$.

Рассмотрим выражение вида ах 2 +вх+с, где а, в, с - действительные числа, а отлично от нуля. Это математическое выражение известно как квадратный трехчлен.

Напомним, что ах 2 - это старший член этого квадратного трехчлена, а - его старший коэффициент.

Но не всегда у квадратного трехчлена присутствуют все три слагаемые. Возьмем для примера выражение 3х 2 + 2х, где а=3, в=2, с=0.

Перейдем к квадратичной функции у=ах 2 +вх+с, где а, в, с - любые произвольные числа. Эта функция является квадратичной, так как содержит член второй степени, то есть х в квадрате.

Довольно легко построить график квадратичной функции, например, можно воспользоваться методом выделения полного квадрата.

Рассмотрим пример построения графика функции у равно -3х 2 - 6х + 1.

Для этого первое, что вспомним, схему выделения полного квадрата в трехчлене -3х 2 - 6х + 1.

Вынесем -3 у первых двух слагаемых за скобки. Имеем -3 умножить на сумму х квадрат плюс 2х и прибавить 1. Добавив и отняв единицу в скобках, получаем формулу квадрата суммы, которую можно свернуть. Получим -3 умножить на сумму (х+1) в квадрате минус 1 прибавить 1. Раскрывая скобки и приводя подобные слагаемые, выходит выражение: -3 умноженное на квадрат суммы (х+1) прибавить 4.

Построим график полученной функции, перейдя к вспомогательной системе координат с началом в точке с координатами (-1; 4).

На рисунке из видео эта система обозначена пунктирными линиями. Привяжем функцию у равно -3х 2 к построенной системе координат. Для удобства возьмем контрольные точки. Например, (0;0), (1;-3), (-1;-3), (2;-12), (-2;-12). При этом отложим их в построенной системе координат. Полученная при построении парабола является необходимым нам графиком. На рисунке это красная парабола.

Применяя метод выделения полного квадрата, мы имеем квадратичную функцию вида: у = а*(х+1) 2 + m.

График параболы у = ах 2 + bx + c легко получить из параболы у=ах 2 параллельным переносом. Это подтверждено теоремой, которую можно доказать, выделив полный квадрат двучлена. Выражение ах 2 + bx + c после последовательных преобразований превращается в выражение вида: а*(х+l) 2 + m. Начертим график. Выполним параллельное перемещение параболы у = ах 2 , совмещая вершину с точкой с координатами (-l;m). Важно то, что х= -l, а значит -b/2а. Значит эта прямая является осью параболы ах 2 + bx + c, ее вершина находится в точке с абсциссой х нулевое равно минус в, деленное на 2а, а ордината вычисляется по громоздкой формуле 4ас - b 2 /. Но эту формулу запоминать не обязательно. Так как, подставив значение абсциссы в функцию, получим ординату.

Для определения уравнения оси, направления ее ветвей и координат вершины параболы, рассмотрим следующий пример.

Возьмем функцию у = -3х 2 - 6х + 1. Составив уравнение оси параболы, имеем, что х=-1. А это значение является координатой х вершины параболы. Осталось найти только ординату. Подставив значение -1 в функцию, получим 4. Вершина параболы находится в точке (-1; 4).

График функции у = -3х 2 - 6х + 1 получен при параллельном переносе графика функции у = -3х 2 , значит, и ведет себя аналогично. Старший коэффициент отрицателен, поэтому ветви направлены вниз.

Мы видим, что для любой функции вида y = ах 2 + bx + c, самым легким является последний вопрос, то есть направление веток параболы. Если коэффициент а положительный, то ветви - вверх, а если отрицательный, то - вниз.

Следующим по сложности идет первый вопрос, потому что требует дополнительных вычислений.

И самый сложный второй, так как, кроме вычислений, еще необходимы знания формул, по которым находятся х нулевое и у нулевое.

Построим график функции у = 2х 2 - х + 1.

Определяем сразу - графиком является парабола, ветви направлены вверх, так как старший коэффициент равен 2, а это положительное число. По формуле находим абсциссу х нулевое, она равна 1,5. Для нахождения ординаты вспомним, что у нулевое равно функции от 1,5, при вычислении получим -3,5.

Вершина - (1,5;-3,5). Ось - х=1,5. Возьмем точки х=0 и х=3. у=1. Отметим данные точки. По трем известным точкам строим искомый график.

Для построения графика функции ах 2 + bx + c необходимо:

Найти координаты вершины параболы и отметить их на рисунке, потом провести ось параболы;

На оси ох взять две симметричные, относительно оси, параболы точки, найти значение функции в этих точках и отметить их на координатной плоскости;

Через три точки построить параболу, при необходимости можно взять еще несколько точек и строить график по ним.

В следующем примере мы научимся находить наибольшее и наименьшее значения функции -2х 2 + 8х - 5 на отрезке .

По алгоритму: а=-2, в=8, значит х нулевое равно 2, а у нулевое - 3, (2;3) - вершина параболы, а х=2 является осью.

Возьмем значения х=0 и х=4 и найдем ординаты этих точек. Это -5. Строим параболу и определяем, что наименьшее значение функции -5 при х=0, а наибольшее 3, при х=2.

Методическая разработка урока алгебры в 9 классе.

Плохой учитель преподносит истину, хороший учит её добывать.

А.Дистервег

Учитель : Нетикова Маргарита Анатольевна, учитель математики ГБОУ школа №471 Выборгского района Санкт- Петербурга.

Тема урока: «График функции y = ax 2 »

Тип урока: урок усвоения новых знаний.

Цель: научить учащихся строить график функцииy = ax 2 .

Задачи:

Обучающие: сформировать умение строить параболу y = ax 2 и установить закономерность между графиком функции y = ax 2

и коэффициентом а.

Развивающие: развитие познавательных умений, аналитического и сравнительного мышления, математической грамотности, способности обобщать и делать выводы.

Воспитывающие: воспитание интереса к предмету, аккуратности, ответственности, требовательности к себе и другим.

Планируемые результаты:

Предметные: уметь по формуле определять направление ветвей параболы и строить её с помощью таблицы.

Личностные: уметь отстаивать свою точку зрения и работать в парах, в коллективе.

Метапредметные: уметь планировать и оценивать процесс и результат своей деятельности, обрабатывать информацию.

Педагогические технологии: элементы проблемного и опережающего обучения.

Оборудование: интерактивная доска, компьютер, раздаточные материалы.

1.Формула корней квадратного уравнения и разложение квадратного трёхчлена на множители.

2.Сокращение алгебраических дробей.

3.Свойства и график функции y = ax 2 , зависимость направления ветвей параболы, её «растяжения» и «сжатия» вдоль оси ординат от коэффициента a .

Структура урока.

1.Организационная часть.

2.Актуализация знаний:

Проверка домашнего задания

Устная работа по готовым чертежам

3.Самостоятельная работа

4.Объяснение нового материала

Подготовка к изучению нового материала (создание проблемной ситуации)

Первичное усвоение новых знаний

5.Закрепление

Применение знаний и умений в новой ситуации.

6.Подведение итогов урока.

7.Домашнее задание.

8.Рефлексия урока.

Технологическая карта урока алгебры в 9 классе по теме: «График функции y = ax 2 »


Этапы урока

Задачи этапа

Деятельность учителя

Деятельность учащихся

УУД

1.Организационная часть

1 минута


Создание рабочего настроения в начале урока

Здоровается с учениками,

проверяет их подготовку к уроку, отмечает отсутствующих, записывает на доске дату.


Готовятся к работе на уроке, приветствуют учителя

Регулятивные:

организация учебной деятельности.


2.Актуализация знаний

4 минуты


Проверить выполнение домашнего задания, повторить и обобщить изученный на прошлых уроках материал и создать условия для успешного выполнения самостоятельной работы.

Собирает тетради у шести учеников (выборочно по два с каждого ряда) для проверки домашнего задания на оценку (приложение 1), затем работает с классом на интерактивной доске

(приложение 2) .


Шесть учащихся сдают на проверку тетради с домашним заданием, затем отвечают на вопросы фронтального опроса (приложение 2) .

Познавательные:

приведение знаний в систему.

Коммуникативные:

умение прислушиваться к мнению окружающих.

Регулятивные:

оценивание результатов своей деятельности.

Личностные:

оценивание уровня усвоения материала.


3.Самостоятельная работа

10 минут


Проверить умение раскладывать на множители квадратный трёхчлен, сокращать алгебраические дроби и описывать некоторые свойства функций по её графику.

Раздаёт учащимся карточки с индивидуальным дифференцированным заданием (приложение 3) .

и листочки для решения.


Выполняют самостоятельную работу, самостоятельно выбирая уровень сложности упражнений по баллам.

Познавательные:

Личностные:

оценивание уровня усвоения материала и своих возможностей.


4.Объяснение нового материала

Подготовка к изучению нового материала

Первичное усвоение новых знаний


Создание благоприятной обстановки для выхода из проблемной ситуации,

восприятия и осмысления нового материала,

самостоятельного

прихода к правильному выводу


Итак, вы умеете строить график функции y = x 2 (графики заранее построены на трёх досках). Назовите основные свойства этой функции:

3. Координаты вершины

5. Промежутки монотонности

Чему в данном случае равен коэффициент при x 2 ?

На примере квадратного трёхчлена вы видели, что это совершенно не обязательно. Каким он может быть по знаку?

Приведите примеры.

Как будут выглядеть параболы с другими коэффициентами, вам предстоит узнать самим.

Лучший способ изучить

что-либо–это открыть самому.

Д.Пойа

Делимся на три команды (по рядам), выбираем капитанов, которые выходят к доске. Задание для команд написано на трёх досках, соревнование начинается!

В одной системе координат построить графики функций

1 команда:

а)y=x 2 б)y= 2x 2 в)y= x 2

2 команда:

а)y= - x 2 б)y=-2x 2 в)y= - x 2

3 команда:

а)y=x 2 б)y=4x 2 в)y=-x 2

Задание выполнено!

(приложение 4) .

Найдите функции, обладающие одинаковыми свойствами.

Капитаны советуются со своими командами.

От чего это зависит?

А чем же эти параболы всё-таки различаются и почему?

От чего зависит «толщина» параболы?

От чего зависит направление ветвей параболы?

Будем условно называть график а) «исходным». Представьте себе резинку: если её растягивать, она становится тоньше. Значит, график б) получен растяжением исходного графика вдоль оси ординат.

Как получен график в)?

Значит, при x 2 может стоять любой коэффициент, который влияет на конфигурацию параболы.

Вот и тема нашего урока звучит так:

«График функции y = ax 2 »


1. R

4. Ветви вверх

5. Убывает на (-

Возрастает на }



Предыдущая статья: Следующая статья: