Главная » Звезды » Ход лучей в призме физика. Степанова в.а.элементы геометрической оптики

Ход лучей в призме физика. Степанова в.а.элементы геометрической оптики

Примененного к случаю падения луча из среды, в которой свет распространяется со скоростью ν 1 в среду, где свет распространяется со скоростью ν 2 >ν 1 следует, что угол преломления больше угла падения:

Но если угол падения удовлетворяет условию:

(5.5)

то угол преломления обращается в 90°, т. е. преломленный луч скользит по границе раздела. Такой угол падения называют предельным (α пр.). При дальнейшем увеличении угла падения проникновение луча в глубь второй среды прекращается и наступает полное отражение (рис. 5.6). Строгое рассмотрение вопроса с волновой точки зрения показывает, что в действительности волна проникает во вторую среду на глубину порядка длины волны.

Полное отражение находит различные практические применения. Так как для системы стекло- воздух предельный угол α пр составляет менее 45°, то призмы, показанные на рисунке 5.7, позволяют изменять ход луча, причем на рабочей границе отражение происходит практически без потерь.

Если ввести свет в тонкую стеклянную трубку с ее торца, то, испытывая на стенках полное отражение, луч будет следовать вдоль трубки даже при сложных изгибах последней. На этом принципе работают световоды - тонкие прозрачные волокна, позволяющие проводить световой пучок по искривленному пути.

На рисунке 5.8 показан отрезок световода. Луч, входящий в световод с торца под углом падения а, встречает поверхность световода под углом γ=90°-β, где β - угол преломления. Чтобы при этом возникло полное отражение, необходимо выполнение условия:

где n - показатель преломления вещества световода. Так как треугольник ABC прямоугольный, то получается:

Следовательно,

Полагая а→90°, находим:

Таким образом, даже при почти скользящем падении луч испытывает в световоде полное отражение, если выполнено условие:

В действительности световод набирается из тонких гибких волокон с показателем преломления n 1 окруженных оболочкой с показателем преломления n 2

Изучая явление преломления, Ньютон выполнил опыт, ставший классическим: узкий пучок белого света, направленный на стеклянную призму, дал ряд цветных изображений сечения пучка - спектр. Затем спектр попадал на вторую такую же призму, повернутую на 180° вокруг горизонтальной оси. Пройдя эту призму, спектр снова собрался в единственное белое изображение сечения светового пучка. Тем самым был доказан сложный состав белого света. Из этого опыта следует, что показатель преломления зависит от длины волны (дисперсия). Рассмотрим работу призмы для монохроматического света, падающего под углом α 1 на одну из преломляющих граней прозрачной призмы (рис. 5.9) с преломляющим углом А.

Из построения видно, что угол отклонения луча δ связан с преломляющим углом призмы сложным соотношением:

Перепишем его в виде

и исследуем на экстремум отклонение луча. Беря производную и приравнивая ее нулю, находим:

Отсюда следует, что экстремальное значение угла отклонения получается прй симметричном ходе луча внутри призмы:

Легко видеть, что при этом получается минимальный угол отклонения, равный:

(5.7)

Уравнение (5.7) применяется для определения показателя преломления по углу минимального отклонения.

Если призма имеет малый преломляющий угол, такой, что можно синусы заменить углами, получается наглядное соотношение:

(5.8)

Опыт показывает, что стеклянные, призмы сильнее преломляют коротковолновую часть спектра (синие лучи), но что нет прямой простой связи между λ, и δ min . Теорию дисперсии мы рассмотрим в главе 8. Пока для нас важно ввести меру дисперсии - разность показателей преломления двух определенных длин волн (одна из них берется в красной, другая - в синей части спектра):

Мера дисперсии для разных сортов стекла различна. На рисунке 5.10 изображен ход показателя преломления для двух распространенных сортов стекла: легкого - крона и тяжелого - флинта. Из чертежа видно, что меры дисперсии отличаются значительно.

Это дает возможность создать весьма удобную призму прямого зрения, где свет разлагается в спектр, почти не меняя направления распространения. Эта призма делается из нескольких (до семи) призм разного стекла с несколько различными преломляющими углами (рис. 5.10, внизу). За счет различной меры дисперсии добиваются хода луча, приблизительно показанного на рисунке.

В заключение отметим, что пропускание света через плоскопараллельную пластину (рис. 5.11) позволяет получить смещение луча параллельно самому себе. Значение смещения

зависит от свойств пластины и от угла, падения на нее первичного луча.

Разумеется, во всех рассмотренных случаях наряду с преломлением существует и отражение света. Но мы его не учитываем, так как преломление в этих вопросах считается основным явлением. Это замечание относится и к преломлению света на искривленных поверхностях различных линз.

«Преломление света физика» - N 2,1 – относительный показатель преломления второй среды относительно первой. Если n<1, то угол преломления больше угла падения. Если обозначить скорость распространения света в первой среде V1, а во второй – V2, то n = V1/ V2. Преломление света. Законы преломления света 8 класс. План изложения нового материала:

«Преломление света» - Световой луч. Негомоцентрические пучки не сходятся в одну точку пространства. Видимый свет - электромагнитное излучение с длинами волн? 380-760 нм (от фиолетового до красного). На фольгу выливалась ртуть, которая образовывала с оловом амальгаму. Набор близких лучей света может рассматриваться как пучок света.

«Отражение и преломление света» - Рене Декарт. С > V. Можно ли создать шапку-невидимку? Евклид. Опыт Евклида. Евклид (III в.до н.э.) - древнегреческий ученый. Закон преломления света. Зависимость угла преломления от угла падения. Учитель физики Октябрьской СОШ №1 Салихова И.Э. {Ссылка на эксперимент «Ход луча воздух - стекло» }.

«Законы преломления» - Преломление света Примеры явления. Обратимая диаграмма. Какая среда оптически более плотная? 1.На рисунке изображено преломление луча света на границе двух сред. Определение. Оптические приборы 1. Микроскоп. 2.Фотоаппарат. 3.Телескоп. Законы преломления. На диаграмме отражён принцип обратимости световых лучей.

«Физика преломление света» - Преломление света. Автор: Васильева Е.Д. Учитель физики, МОУ гимназия, 2009г. Из сказки Г.-Х. Законы преломления света. Но увы! Зеркальное Диффузное. Полное отражение. Отражение -.

«Преломление света в разных средах» - Мираж сверхдальнего видения. Радуга глазами наблюдателя. Истинное (А) и кажущееся (В) положение рыбы. Ход луча в оптически неоднородной среде. Почему ноги человека, зашедшего в воду, кажутся короче? Малый круг. Световод. Рефракция – отклонение света от прямолинейного распространения в оптически неоднородной среде.

Пусть луч падает на одну из гранен призмы. Преломившись в точке , луч пойдет по направлению и, вторично преломившись в точке , выйдет из призмы в воздух (рис. 189). Найдем угол , на который луч, пройдя через призму, отклонится от первоначального направления. Этот угол мы будем называть углом отклонения. Угол между преломляющими гранями, называемый преломляющим углом призмы, обозначим .

Рис. 189. Преломление в призме

Из четырехугольника , в котором углы при и прямые, найдем, что угол равен . Пользуясь этим, из четырехугольника находим

Угол , как внешний угол в треугольнике , равен

где - угол преломления в точке , а - угол падения в точке луча, выходящего из призмы. Далее, пользуясь законом преломления, имеем

С помощью полученных уравнений, зная преломляющий угол призмы и показатель преломления , мы можем при любом угле падения вычислить угол отклонения .

Особенно простую форму получает выражение для угла отклонения в том случае, когда преломляющий угол призмы мал, т. е. призма тонкая, а угол падения невелик; тогда угол также мал. Заменяя приближенно в формулах (86.3) и (86.4) синусы углов самими углами (в радианах), имеем

.

Подставляя эти выражения в формулу (86.1) и пользуясь (86.2), находим

Этой формулой, справедливой для тонкой призмы при падении на нее лучей под небольшим углом, мы воспользуемся в дальнейшем.

Обратим внимание, что угол отклонения луча в призме зависит от показателя преломления вещества, из которого сделана призма. Как мы указывали выше, показатель преломления для разных цветов света различен (дисперсия). Для прозрачных тел показатель преломления фиолетовых лучей наибольший, затем следуют лучи синие, голубые, зеленые, желтые, оранжевые, и, наконец, красные, которые имеют наименьший показатель преломления. В соответствии с этим угол отклонения для фиолетовых лучей наибольший, для красных - наименьший, и луч белого цвета, падающий на призму, по выходе из нее окажется разложенным на ряд цветных лучей (рис. 190 и рис. I на цветном форзаце), т. е. образуется спектр лучей.

Рис. 190. Разложение белого света при преломлении в призме. Падающий пучок белого света изображен в виде фронта с перпендикулярным к нему направлением распространения волны. Для преломленных пучков показана только направления распространения волн

18. Поместив экран позади куска картона, в котором проделано маленькое отверстие, можно получить на этом экране изображение источники. При каких условиях изображение на экране будет отчетливое? Объясните, почему изображение получается перевернутым?

19. Докажите, что пучок параллельных лучей остается таким же после отражения от плоского зеркала

Рис. 191. К упражнению 27. Если чашка пустая, глаз не видит монеты (а), если же чашка наполнена водой, то монета видна (б). Палка, погруженная одним концом в воду, кажется сломанной (в). Мираж в пустыне (г). Как рыба видит дерево и ныряльщика (д)

20. Чему равен угол падения луча, если луч падающий и луч отраженны» образуют угол ?

21. Чему равен угол падения луча, если луч отраженный и луч преломленный образуют угол ? Показатель преломления второй среды относительно первой равен .

22. Докажете обратимость направления световых лучей для случая отражения света.

23. Можно ли придумать такую систему зеркал и призм (линз) через которую один наблюдатель видел бы второго наблюдателя, а второй наблюдатель не видел бы первого?

24. Показатель преломления стекла относительно воды равен 1,182: показатель преломления глицерина относительно воды равен 1.105. Найдите показатель преломления стекла относительно глицерина.

25. Найдите предельный угол полного внутреннего отражения для алмаза на границе с водой.

26. найдите смещение луча при прохождении его через плоскопараллельную пластинку из стекла с показателем преломления, равным 1,55, если угол падения , а толщина пластинки равна

27. Пользуясь законами преломления и отражения, объясните явления, показанные на рис. 191

Рассмотрим метод определения показателя преломления, применимый для прозрачных веществ. Метод состоит в измерении угла отклонения лучей при прохождении света через призму, изготовленную из исследуемого материала. На призму направляется параллельный пучок лучей, поэтому достаточно рассмотреть ход одного из них (S 1) в плоскости, перпендикулярной линии пересечения луча преломляющих граней призмы (рис.6).

А 1 ─направление нормали к грани, на которую падает луч S 1 ,

А 2 ─ направление нормали к грани, из которой выходит луч S 2 ,

i 1 , i 2 - углы падения,

r 1 , r 2 - углы преломления на границах раздела АС и АВ соответственно,

φ - преломляющий угол призмы,

δ - угол отклонения выходящего из призмы луча относительно первоначального направления.

Ход луча через призму рассчитывается на основании законов преломления света. При преломлении на первой грани призмы АС получим

(12)

где n – показатель преломления материала призмы для данной длины волны света.

Для грани АВ закон преломления запишется как

. (13)

Соотношения 12 и 13 позволяют найти выражения для определения n . Однако экспериментально определить углы r 1 и i 1 достаточно сложно. На практике удобнее измерить угол отклонения луча призмой δ и преломляющий угол призмы φ.

Получим формулу для определения показателя преломления n через углы δ и φ .

Сначала воспользуемся известной в геометрии теоремой, что внешний угол треугольника равен сумме внутренних углов, не смежных с ним. Тогда из треугольника EDF получим

φ = r 1 + i 2 . (14)

Из треугольника EHF и, используя (14), получим:

δ =(i 1 – r 1 )+(r 2 – i 2 )= i 1 +r 2 –(r 1 + i 2 )= i 1 +r 2 + φ . (15)

Затем выразим угол δ через угол r 1 , используя законы преломления (12), (13) и (14), и определим условия минимальности δ :

i 1 = arcsin(n sin r 1);

r 2 = arcsin(n sin i 2 ) = arcsin(n sin (φ- r 1 ));

δ = arcsin(n sin r 1 ) +arcsin(n sin (φ- r 1 )).

Зависимость δ от r 1 имеет минимум, условие которого можно найти, приравняв производную δ от r 1 нулю:

Выражение (16) выполняется, если r 1 = φ - r 1. В соответствии с (14) имеем φ - r 1 = i 2 , поэтому r 1 = i 2 . Тогда из законов преломления (12) и (13) следует, что углы i 1 , r 2 также должны быть равны: i 1 = r 2 . Принимая во внимание (14) и (15), получим:

φ = 2 r 1 ; δ min =2 i 1 φ .

C учетом этих равенств окончательно получим:

и
.

Следовательно, при наименьшем угле отклонения луча призмой δ min показатель преломления вещества призмы может быть определен по формуле

. (17)

Таким образом, определение показателя преломления вещества сводится к измерению преломляющего угла призмы и угла наименьшего отклонения лучей .

Угол наименьшего отклонения δ образован двумя направлениями: направлением луча, падающего на призму S 1 и направлением луча, вышедшего из призмы S 2 . Если источник излучения не является монохроматическим, то из-за дисперсии вещества призмы направление преломленного луча Е F , а, следовательно, и направление вышедшего луча S 2 будут различными для разных длин волн, т.е. S 2 =f(λ ). Это приводит к тому, что δ и n для разных λ, будут различными.

Преломляющий угол призмы φ образован гранью призмы СА , на которую падает луч и гранью АВ , из которой выходит излучение, или перпендикулярами к этим граням А 1 и А 2 соответственно.

Источником излучения в работе служит ртутная лампа.

11.2. Геометрическая оптика

11.2.2. Отражение и преломление световых лучей в зеркале, плоскопараллельной пластинке и призме

Формирование изображения в плоском зеркале и его свойства

Законы отражения, преломления и прямолинейного распространения света используются при построении изображений в зеркалах, рассмотрении хода световых лучей в плоскопараллельной пластинке, призме и линзах.

Ход световых лучей в плоском зеркале показан на рис. 11.10.

Изображение в плоском зеркале формируется за плоскостью зеркала на том же расстоянии от зеркала f , на каком находится предмет перед зеркалом d :

f = d .

Изображение в плоском зеркале является:

  • прямым;
  • мнимым;
  • равным по величине предмету: h = H .

Если плоские зеркала образуют между собой некоторый угол, то они формируют N изображений источника света, помещенного на биссектрису угла между зеркалами (рис. 11.11):

N = 2 π γ − 1 ,

где γ - угол между зеркалами (в радианах).

Примечание. Формула справедлива для таких углов γ, для которых отношение 2π/γ является целым числом.

Например, на рис. 11.11 показан источник света S , лежащий на биссектрисе угла π/3. Согласно приведенной выше формуле формируются пять изображений:

1) изображение S 1 формируется зеркалом 1;

2) изображение S 2 формируется зеркалом 2;

Рис. 11.11

3) изображение S 3 является отражением S 1 в зеркале 2;

4) изображение S 4 является отражением S 2 в зеркале 1;

5) изображение S 5 является отражением S 3 в продолжении зеркала 1 или отражением S 4 в продолжении зеркала 2 (отражения в указанных зеркалах совпадают).

Пример 8. Найти число изображений точечного источника света, полученных в двух плоских зеркалах, образующих друг с другом угол 90°. Источник света находится на биссектрисе указанного угла.

Решение . Выполним рисунок, поясняющий условие задачи:

  • источник света S расположен на биссектрисе угла между зеркалами;
  • первое (вертикальное) зеркало З1 формирует изображение S 1;
  • второе (горизонтальное) зеркало З2 формирует изображение S 2;
  • продолжение первого зеркала формирует изображение мнимого источника S 2, а продолжение второго зеркала - мнимого источника S 1; указанные изображения совпадают и дают S 3.

Число изображений источника света, помещенного на биссектрису угла между зеркалами, определяется формулой

N = 2 π γ − 1 ,

где γ - угол между зеркалами (в радианах), γ = π/2.

Число изображений составляет

N = 2 π π / 2 − 1 = 3 .

Ход светового луча в плоскопараллельной пластинке

Ход светового луча в плоскопараллельной пластинке зависит от оптических свойств среды, в которой находится пластинка.

1. Ход светового луча в плоскопараллельной пластинке, находящейся в оптически однородной среде (по обе стороны от пластинки коэффициент преломления среды одинаков), показан на рис. 11.12.

Световой луч, падающий на плоскопараллельную пластинку под некоторым углом i 1 , после прохождения плоскопараллельной пластинки:

  • выходит из нее под тем же углом:

i 3 = i 1 ;

  • смещается на величину x от первоначального направления (пунктир на рис. 11.12).

2. Ход светового луча в плоскопараллельной пластинке, находящейся на границе двух сред (по обе стороны от пластинки коэффициенты преломления сред различны), показан на рис. 11.13 и 11.14.

Рис. 11.13

Рис. 11.14

Световой луч после прохождения плоскопараллельной пластинки выходит из пластинки под углом, отличающимся от угла падения его на пластинку:

  • если показатель преломления среды за пластинкой меньше показателя преломления среды перед пластинкой (n 3 < n 1), то:

i 3 > i 1 ,

т.е. луч выходит под бо́льшим углом (см. рис. 11.13);

  • если показатель преломления среды за пластинкой больше показателя преломления среды перед пластинкой (n 3 > n 1), то:

i 3 < i 1 ,

т.е. луч выходит под меньшим углом (см. рис. 11.14).

Смещение луча - длина перпендикуляра между выходящим из пластинки лучом и продолжением луча, падающего на плоскопараллельную пластинку.

Смещение луча при выходе из плоскопараллельной пластинки, находящейся в оптически однородной среде (см. рис. 11.12), рассчитывается по формуле

где d - толщина плоскопараллельной пластинки; i 1 - угол падения луча на плоскопараллельную пластинку; n - относительный показатель преломления материала пластинки (относительно той среды, в которую помещена пластинка), n = n 2 /n 1 ; n 1 - абсолютный показатель преломления среды; n 2 - абсолютный показатель преломления материала пластинки.

Рис. 11.12

Смещение луча при выходе из плоскопараллельной пластинки может быть рассчитано с помощью следующего алгоритма (рис. 11.15):

1) вычисляют x 1 из треугольника ABC , пользуясь законом преломления света:

где n 1 - абсолютный показатель преломления среды, в которую помещена пластинка; n 2 - абсолютный показатель преломления материала пластинки;

2) вычисляют x 2 из треугольника ABD ;

3) рассчитывают их разность:

Δx = x 2 − x 1 ;

4) смещение находят по формуле

x = Δx  cos i 1 .

Время распространения светового луча в плоскопараллельной пластинке (рис. 11.15) определяется формулой

где S - путь, пройденный светом, S = | A C | ; v - скорость распространения светового луча в материале пластинки, v = c /n ; c - скорость света в вакууме, c ≈ 3 ⋅ 10 8 м/с; n - показатель преломления материала пластинки.

Путь, пройденный световым лучом в пластинке, связан с ее толщиной выражением

S = d  cos i 2 ,

где d - толщина пластинки; i 2 - угол преломления светового луча в пластинке.

Пример 9. Угол падения светового луча на плоскопараллельную пластинку равен 60°. Пластинка имеет толщину 5,19 см и изготовлена из материала с показателем преломления 1,73. Найти смещение луча при выходе из плоскопараллельной пластинки, если она находится в воздухе.

Решение . Выполним рисунок, на котором покажем ход светового луча в плоскопараллельной пластинке:

  • световой луч падает на плоскопараллельную пластинку под углом i 1 ;
  • на границе раздела воздуха и пластинки луч преломляется; угол преломления светового луча равен i 2 ;
  • на границе раздела пластинки и воздуха луч преломляется еще раз; угол преломления равен i 1 .

Указанная пластинка находится в воздухе, т.е. по обе стороны от пластинки среда (воздух) имеет одинаковый показатель преломления; следовательно, для расчета смещения луча можно применить формулу

x = d sin i 1 (1 − 1 − sin 2 i 1 n 2 − sin 2 i 1) ,

где d - толщина пластинки, d = 5,19 см; n - показатель преломления материала пластинки относительно воздуха, n = 1,73; i 1 - угол падения света на пластинку, i 1 = 60°.

Вычисления дают результат:

x = 5,19 ⋅ 10 − 2 ⋅ 3 2 (1 − 1 − (3 / 2) 2 (1,73) 2 − (3 / 2) 2) = 3,00 ⋅ 10 − 2 м = 3,00 см.

Cмещение луча света при выходе из плоскопараллельной пластинки равно 3 см.

Ход светового луча в призме

Ход светового луча в призме показан на рис. 11.16.

Грани призмы, через которые проходит луч света, называются преломляющими . Угол между преломляющими гранями призмы называется преломляющим углом призмы.

Световой луч после прохождения через призму отклоняется; угол между лучом, выходящим из призмы, и лучом, падающим на призму, называется углом отклонения луча призмой.

Угол отклонения луча призмой φ (см. рис. 11.16) представляет собой угол между продолжениями лучей I и II - на рисунке обозначены пунктиром и символом (I), а также пунктиром и символом (II).

1. Если световой луч падает на преломляющую грань призмы под произвольным углом , то угол отклонения луча призмой определяется формулой

φ = i 1 + i 2 − θ,

где i 1 - угол падения луча на преломляющую грань призмы (угол между лучом и перпендикуляром к преломляющей грани призмы в точке падения луча); i 2 - угол выхода луча из призмы (угол между лучом и перпендикуляром к грани призмы в точке выхода луча); θ - преломляющий угол призмы.

2. Если световой луч падает на преломляющую грань призмы под малым углом (практически перпендикулярно преломляющей грани призмы), то угол отклонения луча призмой определяется формулой

φ = θ(n − 1),

где θ - преломляющий угол призмы; n - относительный показатель преломления материала призмы (относительно той среды, в которую эта призма помещена), n = n 2 /n 1 ; n 1 - показатель преломления среды, n 2 - показатель преломления материала призмы.

Вследствие явления дисперсии (зависимость показателя преломления от частоты светового излучения) призма разлагает белый свет в спектр (рис. 11.17).

Рис. 11.17

Лучи различного цвета (различной частоты или длины волны) отклоняются призмой по-разному. В случае нормальной дисперсии (показатель преломления материала тем выше, чем больше частота светового излучения) призма наиболее сильно отклоняет фиолетовые лучи; наименее - красные.

Пример 10. Стеклянная призма, изготовленная из материала с коэффициентом преломления 1,2, имеет преломляющий угол 46° и находится в воздухе. Луч света падает из воздуха на преломляющую грань призмы под углом 30°. Найти угол отклонения луча призмой.

Решение . Выполним рисунок, на котором покажем ход светового луча в призме:

  • световой луч падает из воздуха под углом i 1 = 30° на первую преломляющую грань призмы и преломляется под углом i 2 ;
  • световой луч падает под углом i 3 на вторую преломляющую грань призмы и преломляется под углом i 4 .

Угол отклонения луча призмой определяется формулой

φ = i 1 + i 4 − θ,

где θ - преломляющий угол призмы, θ = 46°.

Для расчета угла отклонения светового луча призмой необходимо вычислить угол выхода луча из призмы.

Воспользуемся законом преломления света для первой преломляющей грани

n 1  sin i 1 = n 2  sin i 2 ,

где n 1 - показатель преломления воздуха, n 1 = 1; n 2 - показатель преломления материала призмы, n 2 = 1,2.

Рассчитаем угол преломления i 2:

i 2 = arcsin (n 1  sin i 1 /n 2) = arcsin(sin 30°/1,2) = arcsin(0,4167);

i 2 ≈ 25°.

Из треугольника ABC

α + β + θ = 180°,

где α = 90° − i 2 ; β = 90° − i 3 ; i 3 - угол падения светового луча на вторую преломляющую грань призмы.

Отсюда следует, что

i 3 = θ − i 2 ≈ 46° − 25° = 21°.

Воспользуемся законом преломления света для второй преломляющей грани

n 2  sin i 3 = n 1  sin i 4 ,

где i 4 - угол выхода луча из призмы.

Рассчитаем угол преломления i 4:

i 4 = arcsin (n 2  sin i 3 /n 1) = arcsin(1,2 ⋅ sin 21°/1,0) = arcsin(0,4301);

i 4 ≈ 26°.

Угол отклонения луча призмой составляет

φ = 30° + 26° − 46° = 10°.





Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта