Главная » Красота и здоровье » Электроны и дырки в кристаллической решетке полупроводника. Энергетические зоны. Свободные носители зарядов: электроны и дырки

Электроны и дырки в кристаллической решетке полупроводника. Энергетические зоны. Свободные носители зарядов: электроны и дырки

Транзистор

Выпрямление на полупровод­никовом переходе

Переходы между полупроводни­ками

Эффект Холла

Примесные полупроводники

Электроны и дырки в полупроводниках

Г л а в a 12 ПОЛУПРОВОДНИКИ

Только не старайтесь сделать пакет чересчур узким.


Одним из самых замечательных и волную­щих открытий последних лет явилось приме­нение физики твердого тела к технической разработке ряда электрических устройств, таких, как транзисторы. Изучение полупро­водников привело к открытию их полезных свойств и ко множеству практических приме­нений. В этой области все меняется так быстро, что рассказанное вам сегодня может через год оказаться уже неверным или, во всяком случае, неполным. И совершенно ясно, что, подробнее изучив такие вещества, мы со временем сумеем осуществить куда более удивительные вещи. Материал этой главы вам не понадобится для понимания следующих глав, но вам, вероятно, будет интересно убедиться, что по крайней мере кое-что из того, что вы изучили, как-то все же связано с практическим делом.

Полупроводников известно немало, но мы ограничимся теми, которые больше всего при­меняются сегодня в технике. К тому же они и изучены лучше других, так что разобравшись в них, мы до какой-то степени поймем и многие другие. Наиболее широко применяемые в на­стоящее время полупроводниковые вещества это кремний и германий. Эти элементы кристал­лизуются в решетке алмазного типа - в такой кубической структуре, в которой атомы обла­дают четверной (тетраэдральной) связью со своими ближайшими соседями. При очень низ­ких температурах (вблизи абсолютного нуля) они являются изоляторами, хотя при комнатной температуре они немного проводят электричество. Это не металлы; их называют полупроводниками.

Если каким-то образом в кристалл кремния или германия при низкой температуре мы введем добавочный электрон, то возникнет то, что описано в предыдущей главе. Такой электрон начнет блуждать по кристаллу, перепрыгивая с места, где стоит один атом, на место, где стоит другой. Мы рассмотрели только поведение атома в прямоугольной решетке, а для реаль­ной решетки кремния или германия уравнения были бы дру­гими. Но все существенное может стать ясным уже из резуль­татов для прямоугольной решетки.

Как мы видели в гл. И, у этих электронов энергии могут находиться только в определенной полосе значений, называемой зоной проводимости. В этой зоне энергия связана с волновым числом k амплитуды вероятности С [см. (11.24)1 формулой

Разные A - это амплитуды прыжков в направлениях х, у и z, а а, b, с - это постоянные решетки (интервалы между узлами) в этих направлениях.



Для энергий возле дна зоны формулу (12.1) можно прибли­зительно записать так:

(см. гл. 11, § 4).

Если нас интересует движение электрона в некотором опре­деленном направлении, так что отношение компонент k все время одно и то же, то энергия есть квадратичная функция волнового числа и, значит, импульса электрона. Можно напи­сать

где a - некоторая постоянная, и начертить график зависимости Е от k (фиг. 12.1).

Фиг. 12.1. Энергетическая диаг­рамма для электрона в кристалле изолятора.

Такой график мы будем называть «энергетиче­ской диаграммой». Электрон в определенном состоянии энергии и импульса можно на таком графике изобразить точкой (S на рисунке).

Мы уже упоминали в гл. 11, что такое же положение вещей возникнет, если мы уберем электрон из нейтрального изолятора. Тогда на это место сможет перепрыгнуть электрон от соседнего атома. Он заполнит «дырку», а сам оставит на том месте, где стоял, новую «дырку». Такое поведение мы можем описать, задав амплитуду того, что дырка окажется возле данного опре­деленного атома, и говоря, что дырка может прыгать от атома к атому. (Причем ясно, что амплитуда А того, что дырка пере­прыгивает от атома а к атому b , в точности равна амплитуде того, что электрон от атома b прыгает в дырку от атома а.)

Математика для дырки такая же, как для добавочного элект­рона, и мы опять обнаруживаем, что энергия дырки связана с ее волновым числом уравнением, в точности совпадающим с (12.1) и (12.2), но, конечно, с другими численными значениями амплитуд А х, A y и А z . У дырки тоже есть энергия, связанная с волновым числом ее амплитуд вероятности. Энергия ее лежит в некоторой ограниченной зоне и близ дна зоны квадратично меняется с ростом волнового числа (или импульса) так же, как на фиг. 12.1. Повторяя наши рассуждения гл. 11, § 3, мы обна­ружим, что дырка тоже ведет себя как классическая частица с какой-то определенной эффективной массой, с той только раз­ницей, что в некубических кристаллах масса зависит от направ­ления движения. Итак, дырка напоминает частицу с положи­тельным зарядом, движущуюся сквозь кристалл. Заряд ча­стицы-дырки положителен, потому что она сосредоточена в том месте, где нет электрона; и когда она движется в какую-то сто­рону, то на самом деле это в обратную сторону движутся электроны.

Если в нейтральный кристалл поместить несколько электро­нов, то их движение будет очень похоже на движение атомов в газе, находящемся под низким давлением. Если их не слишком много, их взаимодействием можно будет пренебречь. Если затем приложить к кристаллу электрическое поле, то электроны нач­нут двигаться и потечет электрический ток. В принципе они должны очутиться на краю кристалла и, если там имеется ме­таллический электрод, перейти на него, оставив кристалл нейт­ральным.

Точно так же в кристалл можно было бы ввести множество дырок. Они бы начали повсюду бродить как попало. Если при­ложить электрическое поле, то они потекут к отрицательному электроду и затем их можно было бы «снять» с него, что и про­исходит, когда их нейтрализуют электроны с металлического электрода.

Электроны и дырки могут оказаться в кристалле одновре­менно. Если их опять не очень много, то странствовать они будут независимо. В электрическом поле все они будут давать свой вклад в общий ток. По очевидной причине электроны назы­вают отрицательными носителями, а дырки - положитель­ными носителями.

До сих пор мы считали, что электроны внесены в кристалл извне или (для образования дырки) удалены из него. Но можно также «создать» пару электрон-дырка, удалив из нейтрального атома связанный электрон и поместив его в том же кристалле на некотором расстоянии. Тогда у нас получатся свободный электрон и свободная дырка, и движение их будет таким, как мы описали.

Энергия, необходимая для того, чтобы поместить электрон в состояние S (мы говорим: чтобы «создать» состояние S), - это энергия Е - , показанная на фиг. 12.2.

Фиг. 12.2, Энергия Е, требуемая для «рождения» свободного

электрона.

Это некоторая энергия,

превышающая Е - мин . Энергия, необходимая для того, чтобы «создать» дырку в каком-то состоянии S ",- это энергия Е + (фиг. 12.3), которая на какую-то долю выше, чем Е (=Е + мин ).

Фиг. 12.3. Энергия Е + , тре­буемая для «рождения» дырки в состоянии S".

А чтобы создать пару в со­стояниях S и S", потребуется просто энергия Е - +Е + .

Образование пар - это, как мы увидим позже, очень частый процесс, и многие люди предпочитают поме­щать фиг. 12.2 и 12.3 на один чертеж, причем энергию дырок откладывают вниз, хотя, конечно, эта энергия положительна. На фиг. 12.4 мы объединили эти два гра­фика.

Фиг. 12.4. Энергетические диаграммы для электрона и дырки.

Преимущества такого графика в том, что энергия E пары =Е - +Е + , требуемая для образования пары (электрона в S и дырки в S’ ), дается попросту расстоянием по вертикали между S и S", как показано на фиг. 12.4. Наименьшая энергия, требуемая для образования пары, называется энерге­тической шириной, или шириной щели, и равняется

е - мин +e + мин.

Иногда вам может встретиться и диаграмма попроще. Ее рисуют те, кому не интересна переменная k, называя ее диа­граммой энергетических уровней. Эта диаграмма (она показана на фиг. 12.5) просто указывает допустимые энергии у электро­нов и дырок.

Фиг. 12.5. Диаграмма энер­гетических уровней для электронов и дырок.

Как создается пара электрон-дырка? Есть несколько спо­собов. Например, световые фотоны (или рентгеновские лучи)

могут поглотиться и обра­зовать пару, если только энергия фотона больше энергетической ширины. Быстрота образования пар пропорциональна интен­сивности света. Если при­жать к торцам кристалла два электрода и прило­жить «смещающее» напря­жение, то электроны и дырки притянутся к элек­тродам. Ток в цепи будет пропорционален силе све­та. Этот механизм ответствен за явление фотопроводимости и за работу фотоэлементов. Пары электрон - дырка могут образоваться также части­цами высоких энергий. Когда быстро движущаяся заряженная частица (например, протон или пион с энергией в десятки и сотни Мэв) пролетает сквозь кристалл, ее электрическое поле может вырвать электроны из их связанных состояний, образуя пары электрон - дырка. Подобные явления сотнями и тыся­чами происходят на каждом миллиметре следа. После того как частица пройдет, можно собрать носители и тем самым вызвать электрический импульс. Перед вами механизм того, что разы­грывается в полупроводниковых счетчиках, в последнее время используемых в опытах по ядерной физике. Для таких счетчи­ков полупроводники не нужны, их можно изготовлять и из кристаллических изоляторов. Так и было на самом деле: первый из таких счетчиков был изготовлен из алмаза, который при ком­натных температурах является изолятором. Но нужны очень чистые кристаллы, если мы хотим, чтобы электроны и дырки

I могли добираться до электродов, не боясь захвата. Потому и используются кремний и германий, что образцы этих полупро­водников разумных размеров (порядка сантиметра) можно по­лучать большой чистоты.

До сих пор мы касались только свойств полупроводниковых кристаллов при температурах около абсолютного нуля. При любой ненулевой температуре имеется еще другой механизм создания пар электрон - дырка. Энергией пару может снаб­дить тепловая энергия кристалла. Тепловые колебания кристал­ла могут передавать паре свою энергию, вызывая «самопроиз­вольное» рождение пар.

Вероятность (в единицу времени) того, что энергия, дости­гающая величины энергетической щели E щели, сосредоточится в месте расположения одного из атомов, пропорциональна ехр(-Е щеяи /kТ), где Т- температура, а k- постоянная Больц­мана [см. гл. 40 (вып. 4)]. Вблизи абсолютного нуля вероятность эта мало заметна, но по мере роста температуры вероятность образования таких пар возрастает. Образование пар при любой конечной температуре должно продолжаться без конца, давая все время с постоянной скоростью все новые и новые положи­тельные и отрицательные носители. Конечно, на самом деле этого не будет, потому что через мгновение электроны случайно снова повстречаются с дырками, электрон скатится в дырку, а освобожденная энергия перейдет к решетке. Мы скажем, что электрон с дыркой «аннигилировали». Имеется определенная вероятность того, что дырка встретится с электроном и оба они друг друга уничтожат.

Если количество электронов в единице объема есть N n (n означает негативных, или отрицательных, носителей), а плот­ность положительных (позитивных) носителей N p , то вероят­ность того, что за единицу времени электрон с дыркой встре­тятся и проаннигилируют, пропорциональна произведению N n N p . При равновесии эта скорость должна равняться ско­рости, с какой образуются пары. Стало быть, при равновесии произведение N n N p должно равняться произведению некото­рой постоянной на больцмановский множитель

Говоря о постоянной, мы имеем в виду ее примерное постоянство. Более полная теория, учитывающая различные детали того, как электроны с дырками «находят» друг друга, свидетельствует, что «постоянная» слегка зависит и от температуры; но главная зависимость от температуры лежит все же в экспоненте.

Возьмем, например, чистое вещество, первоначально бывшее нейтральным. При конечной температуре можно ожидать, что число положительных и отрицательных носителей будет одно и то же, N n = N р. Значит, каждое из этих чисел должно с температурой меняться как . Изменение мно­гих свойств полупроводника (например, его проводимости) определяется главным образом экспоненциальным множителем, потому что все другие факторы намного слабее зависят от тем­пературы. Ширина щели для германия примерно равна 0,72 эв, а для кремния 1,1 эв.

При комнатной температуре kТ составляет около 1 / 40 эв. При таких температурах уже есть достаточно дырок и электро­нов чтобы обеспечить заметную проводимость, тогда как, ска­жем, при 30°К (одной десятой комнатной температуры) прово­димость незаметна. Ширина щели у алмаза равна 6-7 эв, по­этому при комнатной температуре алмаз - хороший изолятор.

Для описания электронных явлений в неполностью заполненной электронами валентной зоне . В электронном спектре валентной зоны часто возникает несколько зон, различающихся величиной эффективной массы и энергетическим положением (зоны легких и тяжёлых дырок, зона спин-орбитально отщепленных дырок).

Для создания дырок в полупроводниках используется легирование кристаллов акцепторными примесями . Кроме того, дырки могут возникать и в результате внешних воздействий: теплового возбуждения электронов из валентной зоны в зону проводимости, освещения светом.

В случае кулоновского взаимодействия дырки с электроном из зоны проводимости образуется связанное состояние, называемое экситоном .



Wikimedia Foundation . 2010 .

Смотреть что такое "Дырка (носитель заряда)" в других словарях:

    Носители заряда общее название подвижных частиц или квазичастиц, которые несут электрический заряд и способны обеспечивать протекание электрического тока. Примерами подвижных частиц являются электроны, ионы. Примером квазичастицы носителя заряда… … Википедия

    В физике квантовое состояние, не занятое электроном. Термин дырка широко применяется в зонной теории твердого тела, как вакантное состояние в разрешенной заполненной зоне. Дырка положительно заряженный носитель заряда в полупроводнике … Большой Энциклопедический словарь

    И; мн. род. рок, дат. ркам; ж. 1. = Дыра (1 2 зн.). Дырки в стенах. В заднем зубе д. Заштопать дырку. На чулке огромная д. 2. Сквозное отверстие для крепления чего л. Дырки в ремне. Д. для шурупа. Просверлить, проткнуть дырку. 3. Разг. О пулевом … Энциклопедический словарь

    У этого термина существуют и другие значения, см. Дырка (значения). Необходимо проверить качество перевода и привести статью в соответствие со стилистическими правилами Википедии. Вы можете помочь … Википедия

    ГОСТ 22622-77: Материалы полупроводниковые. Термины и определения основных электрофизических параметров - Терминология ГОСТ 22622 77: Материалы полупроводниковые. Термины и определения основных электрофизических параметров оригинал документа: 11. Акцептор Дефект решетки, способный при возбуждении захватывать электрон из валентной зоны Определения… … Словарь-справочник терминов нормативно-технической документации

    В ва, характеризующиеся увеличением электрич. проводимости с ростом т ры. Хотя часто П. определяют как в ва с уд. электрич. проводимостью а, промежуточной между ее значениями для металлов (s ! 106 104 Ом 1 см 1) и для хороших диэлектриков (s ! 10 … Химическая энциклопедия

    Наблюдается при больших концентрациях примесей. Их взаимодействие ведёт к качественным изменениям свойств полупроводников. Это можно наблюдать в сильно легированных проводниках, содержащих примеси в столь больших концентрациях Nпр, что среднее… … Википедия

    Широкий класс веществ, характеризующихся значениями электропроводности σ, промежуточными между электропроводностью металлов (См. Металлы) (σ Полупроводники 106 104 ом 1 см 1) и хороших диэлектриков (См. Диэлектрики) (σ ≤ 10 10 10 12 ом… … Большая советская энциклопедия

    Широкий класс в в, характеризующийся значениями уд. электропроводности s, промежуточными между уд. электропроводностью металлов s=106 104 Ом 1 см 1 и хороших диэлектриков s=10 10 10 12 Ом 1см 1 (электропроводность указана при комнатной темп ре).… … Физическая энциклопедия

    Ов; мн. (ед. полупроводник, а; м.). Физ. Вещества, которые по электропроводности занимают промежуточное место между проводниками и изоляторами. Свойства полупроводников. Производство полупроводников. // Электрические приборы и устройства,… … Энциклопедический словарь

Цель работы - ознакомление с физическими процессами в ЭДП, изучение вольтамперных характеристик диодов из германия и кремния и их зависимости от ширины запрещенной зоны полупроводника и температуры, определение ширины запрещенной зоны германия, изучение p-n-перехода как приемника света (фотодиода).

ЭЛЕКТРОНЫ И ДЫРКИ В ПОЛУПРОВОДНИКАХ

В твердом теле атомы находятся друг от друга на расстоянии порядка атомного размера, поэтому в нем валентные электроны могут переходить от одного атома к другому. Однако этот процесс не приводит непосредственно к электропроводности, так как в целом распределение электронной плотности жестко фиксировано. Например, в германии и кремнии два электрона осуществляют ковалентную связь между двумя соседними атомами в кристалле. Чтобы создать проводимость, необходимо разорвать хотя бы одну из связей, удалить с нее электрон и перенести его в какую-либо другую ячейку кристалла, где все связи заполнены, и этот электрон будет лишним. Такой электрон в дальнейшем переходит из ячейки в ячейку. Являясь лишним, он переносит с собой излишний отрицательный заряд, т.е. становится электроном проводимости.

Разорванная связь становится блуждающей по кристаллу дыркой, поскольку электрон соседней связи быстро занимает место ушедшего. Недостаток электрона у одной из связей означает наличие у пары атомов единичного положительного заряда, который переносится вместе с дыркой. Электроны и дырки - свободные носители заряда в полупроводниках. В идеальных кристаллах, не имеющих ни примесей, ни дефектов, возбуждение одного из связанных электронов и превращение его в электрон проводимости неизбежно вызывает появление дырки, так что концентрация обоих типов носителей равны между собой.

Для образования электронно- дырочной пары необходимо затратить энергию, превышающую ширину запрещенной зоны Eд; например, для германия Ед=0,66 эВ. для кремния Ед=1,11 эВ.

Помимо процесса образования электронов и дырок идет обратный процесс - их исчезновение, или рекомбинация. Электрон проводимости, оказавшись рядом с дыркой, восстанавливает разорванную связь. При этом исчезают один электрон проводимости и одна дырка. При отсутствии внешних воздействий, например света, устанавливается динамическое равновесие процессов, протекающих в обоих направлениях. Равновесные концентрации электронов и дырок определяются абсолютной температурой Т, шириной запрещенной зоны Ед, концентрацией примесей и другими факторами. Однако произведение концентраций электронов и дырок (n и p соответственно) не зависит от количества примесей и определяется для данного полупроводника температурой и величиной Eд:

где k – постоянная Больцмана; А – коэффициент пропорциональности.

Рассмотрим два следствия из формулы. В собственном (беспримесном) полупроводнике одинаковые концентрации электронов и дырок будут равны

В примесных полупроводниках при достаточно большом количестве примеси концентрация основных носителей примерно равна концентрации примеси. Например, в полупроводнике n-типа концентрация электронов равна концентрации донорных атомов; тогда концентрация дырок (неосновных носителей) равна:

ЭЛЕКТРОННО-ДЫРОЧНОЙ ПЕРЕХОД В РАВНОВЕСНОМ СОСТОЯНИИ

В монокристалле можно создать резкий переход от полупроводника n-типа к полупроводнику p-типа. На рисунке левая от линии ММ часть кристалла, p-типа, содержит основные -носители - дырки, примерно такое же количество отрицательных акцепторных ионов и незначительное количество электронов. Правая часть, n-типа, содержит соответственно электроны проводимости (основные носители), положительные донорные ионы и небольшое количество дырок.

ВОЛЬТ-АМПЕРНАЯ ХАРАКТЕРИСТИКА ИДЕАЛЬНОГО ЭДП

Зависимость I(U) называют вольт-амперной характеристикой ЭДП (диода).

В зависимости от значения питающего напряжении и полярности источника изменяется высота барьера в ЭДП при неизменной полярности двойного слоя зарядов. Поскольку неосновные носители "скатываются" с барьера, ток неосновных носителей остается постоянным при изменениях высоты барьера. Ток основных носителей, которые "взбираются" на барьер, очень чувствителен к его высоте: при повышении барьера он быстро уменьшается до нуля, а при понижении барьера может возрасти на несколько порядков. Чтобы получить зависимость тока от напряжения, необходимо знать энергетический спектр частиц. В целом эта зависимость довольно сложная, но для описания процессов в ЭДП необходимо знать только самую "энергетическую" честь спектра, "хвост" распределения, поскольку в практических случаях только самые быстрые частицы способны преодолеть барьер. Спектр таких быстрых электронов экспоненциальный.

При прямом смешении ток протекает в положительном направлении, а при обратном смещении направление тока изменяется. Напряжению U припишем знак "плюс" при прямом смещении и "минус" при обратном смещении. Тогда можно получить зависимость, описывающую вольт-амперную характеристику идеального электронно-дырочного перехода

Теоретическая вольт-амперная характеристика р - п -перехода, рассчитанная по формуле при комнатной температуре Т= 295 К, представлена на рисунке и в таблице (напряжение U в вольтах). Зависимость I(U) обладает резко выраженной нелинейностью, т.е. проводимость (или сопротивление) р - п -перехода сильно зависит от U. При обратном смещении через переход течет ток Is неосновных носителей, называемые током насыщения, который обычно мал и почти не зависит от напряжения.

Как видно из формулы, ток насыщения задает масштаб по оси I вольт-амперной характеристики. Значение Is пропорционально площади перехода, концентрации неосновных носителей и их скорости хаотического движения. Учитывая формулу, получаем следующую зависимость тока насыщения от ширины запрещенной зоны и температуры:

где С - коэффициент пропорциональности, не зависящий от Ед и Т.

Экспоненциальный множитель определяет сильную зависимость тока как от температуры, так и ширины запрещенной зоны. При увеличении Ед, например при замене германия кремнием, ток Is уменьшается на несколько порядков, кремниевые диоды почти не пропускают ток в обратном направлении; как следствие, изменяется ВАХ при прямом смещении (качественно эти изменения отражены на рис.). Ток насыщения возрастает при нагревании; например, для германия расчет по формуле дает увеличение тока в 80 раз при нагревании от комнатной температуры на 60 °С (от 295 до 355 К). Изменения ВАХ при нагревании показаны на рис.

Из опыта, в котором измерен ток насыщения при различной температуре, можно найти значение Ед. Полученную зависимость следует сравнить с формулой, которую логарифмированием преобразуем к виду

Если точки ложатся на прямую, то опыт подтверждает экспоненциальную зависимость тока от обратной температуры.

ЭДП В КАЧЕСТВЕ ПРИЕМНИКА СВЕТА (Фотодиод)

Свет может разорвать электронную связь в полупроводнике, образуя электрон проводимости и дырку (на зонной диаграмме электрон переходит из валентной зоны в зону проводимости). При этом концентрация носителей (и проводимость полупроводника) становится больше равновесной. Такой процесс называется внутренним фотоэффектом (в отличие от внешнего фотоэффекта при внутреннем фотоэффекте электрон не вылетает наружу). Разрыв электронной связи осуществляется одним квантом света (фотоном), энергия которого должна превышать значение Ед. Следовательно, у внутреннего фотоэффекта имеется "красная граница". Для кремния, что больше, чем длина волны видимого света.

При освещении p-n-перехода образуются дополнительные электронно-дырочные пары. При достаточном освещении они могут существенно увеличить концентрацию неосновных носителей, которых было мало, практически не изменяя в процентном отношении количество основных носителей. При этой к существовавшему в темноте току неосновных носителей - Is добавляется фототок - I, протекающий в том же направлении.

Фототок равен разности тока и тока называемого в данной случае темновым током. При достаточно большой освещенности темновой ток может составлять пренебрежимо малую долю полного тока. Электронно-дырочный переход, специально изготовленный для детектирования света и работающий при обратном смещении, называется фотодиодом. Это простой и удобный приемник света, фототок которого пропорционален освещенности Е.

ОПИСАНИЕ ЛАБОРАТОРНОЙ УСТАНОВКИ

Упрощенная схема, в которой не показаны переключатели, дана на рис. Диод Д (кремниевый или германиевый) через резистор R подключен к источнику постоянного напряжения (ИП), изменяемого от 0 до 15 В. Переменный резистор R1 также используется для изменения напряжения на диоде. Цифровым вольтметром с большим сопротивлением измеряют напряжения U на диоде и Ur на известном сопротивлении R для вычисления тока I=Ur/R. Для измерения малых токов устанавливают большое сопротивление.

Два диода, нагреватель и один спай термопары плотно закреплены на металлической пластине, расположенной в камере с крышкой. Для опытов со светом защитная оболочка кремниевого диода удалена, и при открытой крышке р-п -переход можно осветить лампой. Для измерения температуры диодов служит термопара. Она состоит из двух металлических проводников - медного и константанового (специальный сплав), спай которых находится в тепловом контакте с диодами при измеряемой температуре Т. Другие концы проводов соединены с вольтметром, они имеют комнатную температуру T 1 - 295 К. Когда температуры Т и Т 1 различны, в цепи возникает термоЭДС U T , пропорциональная разности температур и измеряемая вольтметром. Температуру диодов в Кельвинах можно вычислить по формуле

T=295+24.4 U T ,

где напряжение U T следует взять в милливольтах.

🕗24.05.2008 г. | 🙋 | 👀27 775 | ✍️0


Эта статья в основном предназначена для тех, кто только-только начал первые шаги в области радиотехники, но может быть полезна и опытным радиолюбителям или студентам.

В первой части статьи разъясняются процессы, происходящие в полупроводниках на атомном уровне, расписываются такие понятия, как валентная зона , зона проводимости , собственная электропроводность и другие.
Остальные пять частей будут постепенно выкладываться в раздел "Начинающим".

Структура и энергетические диаграммы чистого полупроводника

К полупроводниковым относят вещества, которые по своему удельному сопротивлению занимают промежуточное положение между проводниками и диэлектриками. Характерной чертой полупроводников, отличающей их от других веществ, является сильная зависимость их сопротивления от температуры и концентрации примесей.

В производстве полупроводниковых приборов наибольшее распространение получили такие материалы, как германий и кремний. Они имеют кристаллическую структуру и расположены в IV группе таблицы Менделеева.

Все вещества состоят из атомов. Атом включает положительно заряженное ядро и электроны, вращающиеся вокруг него по орбитам с определенным радиусом.

Энергию электронов атома можно представить в виде диаграммы (рис. 3.1, а). Как видно из рисунка, электроны в атоме могут обладать лишь значениями энергий, равными W1 , W2 , W3 , W4 , и не могут иметь промежуточных уровней.

Электроны, вращающиеся на внешних оболочках, называются валентными. Установлено, что в атоме любого вещества одинаковая энергия может быть не более чем у двух электронов. Иными словами, на одном энергетическом уровне может находиться не более двух электронов. Поскольку в веществе содержится большое количество атомов, вследствие их взаимодействия энергетические уровни электронов, вращающихся по одинаковым орбитам, смещаются относительно энергетических уровней этих же электронов в отдельном «изолированном» атоме. В результате образуются целые энергетические зоны, состоящие из близко расположенных энергетических уровней. Энергетические уровни, образованные валентными электронами, называют валентной зоной (рис. 3.1,б).

Образование свободных электронов и дырок в полупроводнике

При абсолютном нуле (абсолютный нуль - наиболее низкая возможная температура -273,16 °С; в настоящее время достигнуты температуры, отличающиеся от абсолютного нуля на ничтожные доли градуса) все валентные электроны находятся на орбитах и прочно связаны с атомами. Поэтому в таком полупроводнике нет свободных электронов и он представляет собой идеальный изолятор (диэлектрик). С ростом температуры валентные электроны получают дополнительную энергию и могут оторваться от атома. Оторвавшийся электрон становится «свободным». Энергетические уровни свободных электронов образуют зону проводимости, расположенную над валентной зоной и отделенную от нее запрещенной зоной шириной ΔW (рис. 3.1, в).
Свободные электроны могут перемещаться по полупроводнику и участвовать таким образом в образовании электрического тока. Чем больше свободных электронов в единице объема вещества, тем меньше его сопротивление.

Между атомами в кристалле полупроводника существуют ковалентные связи. Ковалентная связь образуется за счет вращения двух электронов, принадлежащих двум рядом расположенным атомам, по одной общей орбите (рис. 3.2, а). Германий и кремний являются четырехвалентными элементами, и их атомы имеют по 4 валентных электрона. В результате образования парных ковалентных связей все атомы германия и кремния оказываются взаимосвязанными. Плоские модели кристаллических решеток чистого германия Ge и кремния Si изображены на рис. 3.2, б. На этом рисунке парные ковалентпые связи показаны двумя параллельными линиями, соединяющими два соседних атома, а электроны, образующие эти связи,- в виде черных точек.

При сообщении электрону дополнительной энергии ковалентная связь может нарушиться и он станет свободным.
Место на внешней орбите атома, где ранее находился электрон, называют дыркой. На энергетической диаграмме дырке соответствует свободный энергетический уровень в валентной зоне, с которого электрон перешел в зону проводимости (рис. 3.2, г).

Образование свободных электронов в зоне проводимости и дырок в валентной зоне называют генерацией подвижных носителей заряда, или генерацией пар электрон - дырка, поскольку появление свободного электрона в зоне проводимости обязательно сопровождается появлением дырки в валентной зоне.

Свободный электрон может, теряя часть своей энергии, из зоны проводимости перейти в валентную зону, заполнив собой одну из имеющихся в ней дырок. При этом восстанавливается ковалентная связь. Этот процесс называют рекомбинацией. Таким образом, рекомбинация всегда сопровождается потерей пары электрон-дырка.

Электронный и дырочный токи в полупроводниках

При заданной температуре в полупроводнике всегда имеются разорванные ковалентные связи, т. е. некоторое количество свободных электронов и соответствующее им число дырок. Если к такому полупроводнику подключить источник напряжения, свободные электроны под действием образовавшегося электрического поля будут двигаться в сторону положительного полюса, создавая электрический ток. Кроме того, электроны могут покидать одни ковалентные связи и восстанавливать другие - разрушенные. При этом в одном месте дырка исчезает, а в другом, откуда ушел электрон, появляется. Следовательно, в полупроводнике могут перемещаться не только электроны, но и дырки, и электрический ток включает две составляющие: электронную, образуемую путем перемещения свободных электронов, и дырочную, создаваемую при перемещении дырок. Дырке условно соответствует положительный единичный заряд, равный заряду электрона.

Полупроводники, которые состоят только из атомов германия или кремния, называют чистыми, или собственными, а электропроводность (способность проводить электрический ток), обусловленную наличием свободных электронов и дырок,- собственной электропроводностью.

Примесные полупроводники n-типа

Для придания полупроводниковым приборам необходимых свойств в полупроводники добавляют примеси других элементов. В качестве таковых используются пяти- и трехвалентные элементы, расположенные в V и III группах таблицы Менделеева.

При внесении в германий или кремний пятивалентных элементов (фосфора Р, мышьяка As, сурьмы Sb и др.) четыре валентных электрона примесных атомов образуют устойчивые ковалентные связи с атомами основного вещества. Пятые валентные электроны примесных атомов оказываются как бы лишними, они слабо связаны с атомами, и достаточно тепловой энергии, сообщаемой им при комнатной температуре, чтобы они смогли оторваться от атомов и стать свободными. При этом примесный атом превращается в положительный ион.

Появление свободных электронов не сопровождается дополнительными разрушениями ковалентных связей, а наоборот, некоторые дырки «исчезают», рекомбинируя (восстанавливая связь) со свободными электронами. Следовательно, в таких полупроводниках свободных электронов значительно больше, чем дырок, и протекание тока через полупроводник будет в основном определиться движением электронов и в очень малой степени - движением дырок. Это полупроводники n-типа (от латинского слова negative-отрицательный), примеси же называют донорами. Энергетическая диаграмма полупроводника n-типа приведена на рис. 3.3, а.

Примесные полупроводники р-типа

Если в германий или кремний ввести трехвалентные атомы бора В, индия In, алюминия Аl, галлия Ga и др., то три валентных электрона примесных атомов образуют устойчивые ковалентные связи с тремя рядом расположенными атомами основного вещества. Для образования четвертой ковалентной связи примесным атомам не хватает по одному электрону. Эти электроны они получают вследствие разрыва ковалентных связей между атомами основного вещества. Причем на месте ушедшего электрона образуется дырка, а примесные атомы, принявшие по электрону, превращаются в отрицательные ионы. Таким образом, в полупроводнике образуется дополнительное количество дырок, а число свободных электронов не увеличивается. Электрический ток в таком полупроводнике создается главным образом за счет перемещения дырок в валентной зоне и в незначительной степени - при движении свободных электронов в зоне проводимости. Это полупроводники р-типа (от латинского positive- положительный). Примеси называют акцепторами.

Энергетическая диаграмма примесного полупроводника р-типа приведена на рис. 3.3, б.
Подвижные носители электрического заряда, которые преобладают в полупроводнике данного типа, называются основными, остальные - неосновными. В полупроводнике n-типа основными носителями заряда являются электроны, а неосновными - дырки, в полупроводнике р-типа, наоборот, дырки - основные носители, а электроны - неосновные.

Дырка
Символ: h (англ. hole )


Когда электрон покидает атом гелия, на его месте остается дырка. При этом атом становится положительно заряженным.
Состав: Квазичастица
Классификация: Лёгкие дырки , тяжёлые дырки
В честь кого и/или чего названа: Отсутствие электрона
Квантовые0 числа :
Электрический заряд : +1
Спин : Определяется спином электронов в валентной зоне ħ

Определение по ГОСТ 22622-77: «Незаполненная валентная связь, которая проявляет себя как положительный заряд, численно равный заряду электрона».

Дырочную проводимость можно объяснить при помощи следующей аналогии: имеется ряд людей, сидящих в аудитории, где нет запасных стульев. Если кто-нибудь из середины ряда хочет уйти, он перелезает через спинку стула в пустой ряд и уходит. Здесь пустой ряд - аналог зоны проводимости , а ушедшего человека можно сравнить со свободным электроном. Представим, что ещё кто-то пришёл и хочет сесть. Из пустого ряда плохо видно, поэтому там он не садится. Вместо этого человек, сидящий возле свободного стула, пересаживается на него, вслед за ним это повторяют и все его соседи. Таким образом, пустое место как бы двигается к краю ряда. Когда это место окажется рядом с новым зрителем, он сможет сесть.

В этом процессе каждый сидящий передвинулся вдоль ряда. Если бы зрители обладали отрицательным зарядом, такое движение было бы электрической проводимостью . Если вдобавок стулья заряжены положительно, то ненулевым суммарным зарядом будет обладать только свободное место. Это простая модель, показывающая как работает дырочная проводимость. Однако на самом деле, из-за свойств кристаллической решётки, дырка не находится в определённом месте, как описано выше, а размазана по области размером во много сотен элементарных ячеек.

Для создания дырок в полупроводниках используется легирование кристаллов акцепторными примесями . Кроме того, дырки могут возникать и в результате внешних воздействий: теплового возбуждения электронов из валентной зоны в зону проводимости, освещения светом или облучения ионизирующим излучением .

В случае кулоновского взаимодействия дырки с электроном из зоны проводимости образуется связанное состояние, называемое экситоном .

Тяжёлые дырки - название одной из ветвей энергетического спектра валентной зоны кристалла.

Дырки в квантовой химии

Термин ды́рка также используется в вычислительной химии , где основное состояние молекулы интерпретируется как вакуумное состояние - в этом состоянии нет электронов. В такой схеме отсутствие электрона в обычно-заполненном состоянии называется ды́ркой и рассматривается как частица. А присутствие электрона в обычно-пустом пространстве просто называют электроном.





Предыдущая статья: Следующая статья:

© 2015 .
О сайте | Контакты
| Карта сайта